Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-19T09:16:58.424Z Has data issue: false hasContentIssue false

Ergodic properties of inviscid truncated models of two-dimensional incompressible flows

Published online by Cambridge University Press:  29 March 2006

C. Basdevant
Affiliation:
Laboratoire de Météorologie Dynamique du C.N.R.S., Paris, France
R. Sadourny
Affiliation:
Laboratoire de Météorologie Dynamique du C.N.R.S., Paris, France

Abstract

The equilibrium spectra of two-dimensional numerical model flows are studied from the viewpoint of microcanonical ensemble averages. The method leads to accurate numerical verification of the ergodic, or mixing, hypothesis in the case of systems constrained to a finite number of degrees of freedom.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arakawa, A. 1966 Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow (part 1). J. Comp. Phys. 1, 119143.Google Scholar
Deem, G. S. & Zabusky, N. J. 1971 Ergodic boundary in numerical simulations of two-dimensional turbulence Phys. Rev. Lett. 27, 396399.Google Scholar
Fox, D. G. & Orszag, S. A. 1973 Inviscid dynamics of two-dimensional turbulence Phys. Fluids, 16, 167171.Google Scholar
Frisch, U., Lesieur, M. & Brissaud, A. 1974 A Markovian random coupling model for turbulence J. Fluid Mech. 65, 145152.Google Scholar
Khinchin, A. I. 1949 Mathematical Foundations of Statistical Mechanics. Dover.
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence Phys. Fluids, 10, 14171423.Google Scholar
Kraichnan, R. H. 1971a An almost-Markovian Galilean-invariant turbulent model J. Fluid Mech. 47, 513524.Google Scholar
Kraichnan, R. H. 1971b Inertial-range transfer in two- and three-dimensional turbulence J. Fluid Mech. 47, 525535.Google Scholar
Leith, C. E. 1968 Two-dimensional eddy viscosity coefficients. Proc. W.M.O.'I.U.G.G. Symp. Numer. Weather Prediction, Tokyo, vol. 1, pp. 4144.Google Scholar
Leith, C. E. 1972 Internal Turbulence. Conf. on Parametrization of Sub-grid Scale Processes, Leningrad.
Lilly, D. K. 1969 Numerical simulation of two-dimensional turbulence. Phys. Fluids Suppl. 12, II 240.Google Scholar
Onsager, L. 1949 Statistical hydrodynamics Nuovo Cimento Suppl. 6, 279286.Google Scholar
Orszag, S. A. 1970 Analytical theories of turbulence J. Fluid Mech. 41, 363386.Google Scholar
Sadourny, R., Arakawa, A. & Mintz, Y. 1968 Integration of the non divergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere Mon. Weather Rev. 96, 351356.Google Scholar
Smagorinsky, J., Manabe, S. & Holloway, J. L. 1965 Numerical results from a nine-level general circulation model of the atmosphere Mon. Weather Rev. 93, 727768.Google Scholar
Somerville, R. C. J., Stone, P. M., Halem, M., Hansen, J. E., Hogan, J. S., Druyan, L. M., Russell, G., Lacis, A. A., Quirk, W. J. & Tenenbaum, J. 1973 The GISS Model of the global atmosphere. Rep. Inst. Space Studies, Goddard Space Flight Center, N.A.S.A., New York.Google Scholar