Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T21:02:02.316Z Has data issue: false hasContentIssue false

Elliptic instability in a strained Batchelor vortex

Published online by Cambridge University Press:  19 April 2007

LAURENT LACAZE
Affiliation:
Institut de Recherche sur les Phénoménes Hors Équilibre (IRPHE), CNRS/Universités Aix-Marseille I & II, 49 rue F. Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France
KRIS RYAN
Affiliation:
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical Engineering, Monash University, Melbourne, Victoria 3800, Australia
STÉPHANE LE DIZÈS
Affiliation:
Institut de Recherche sur les Phénoménes Hors Équilibre (IRPHE), CNRS/Universités Aix-Marseille I & II, 49 rue F. Joliot-Curie, BP 146, F-13384 Marseille cedex 13, France

Abstract

The elliptic instability of a Batchelor vortex subject to a stationary strain field is considered by theoretical and numerical means in the regime of large Reynolds number and small axial flow. In the theory, the elliptic instability is described as a resonant coupling of two quasi-neutral normal modes (Kelvin modes) of the Batchelor vortex of azimuthal wavenumbers m and m + 2 with the underlying strain field. The growth rate associated with these resonances is computed for different values of the azimuthal wavenumbers as the axial flow parameter is varied. We demonstrate that the resonant Kelvin modes m = 1 and m = −1 which are the most unstable in the absence of axial flow become damped as the axial flow is increased. This is shown to be due to the appearance of a critical layer which damps one of the resonant Kelvin modes. However, the elliptic instability does not disappear. Other combinations of Kelvin modes m = −2 and m = 0, then m = −3 and m = −1 are shown to become progressively unstable for increasing axial flow. A complete instability diagram is obtained as a function of the axial flow parameter for several values of the strain rate and Reynolds number.

The numerical study considers a system of two counter-rotating Batchelor vortices in which the strain field felt by each vortex is due to the other vortex. The characteristics of the most unstable linear modes developing on the frozen base flow are computed by direct numerical simulations for two axial flow parameters and compared to the theory. In both cases, a very good agreement is obtained for the most unstable modes. Less unstable modes are also identified in the numerics and shown to correspond to peculiar resonances involving Kelvin modes from branches of different labels.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arendt, S., Fritts, D. C. & Andreassen, O. 1997 The initial value problem for Kelvin vortex waves. J. Fluid Mech. 344, 181212.CrossRefGoogle Scholar
Ash, R. L. & Khorrami, M. R. 1995 Vortex stability. In Fluid Vortices (ed. Green, S. I.), chap. 8, pp. 317372. Kluwer.CrossRefGoogle Scholar
Batchelor, G. K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.CrossRefGoogle Scholar
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.CrossRefGoogle ScholarPubMed
Bayly, B. J., Orszag, S. A. & Herbert, T. 1988 Instability mechanisms in shear-flow transition. Annu. Rev. Fluid Mech. 20, 359391.CrossRefGoogle Scholar
Ehrenstein, U. & Le Dizès, S. 2005 Relationship between co-rotating vortex-pair equilibria and a single vortex in an external deformation field. Phys. Fluids 17 074103.CrossRefGoogle Scholar
Eloy, C. & Le Dizès, S. 1999 Three-dimensional instability of Burgers and Lamb–Oseen vortices in a strain field. J. Fluid Mech. 378, 145166.CrossRefGoogle Scholar
Eloy, C. & Le Dizès, S. 2001 Stability of the Rankine vortex in a multipolar strain field. Phys. Fluids 13 (3), 660676.CrossRefGoogle Scholar
Eloy, C., LeGal, P. Gal, P. & Le Dizès, S. 2003 Elliptic and triangular instabilities in rotating cylinders. J. Fluid Mech. 476, 357388.CrossRefGoogle Scholar
Fabre, D. & Jacquin, L. 2004 a Short-wave cooperative instabilities in representative aircraft vortices. Phys. Fluids 16, 13661378.CrossRefGoogle Scholar
Fabre, D. & Jacquin, L. 2004 b Viscous instabilities in trailing vortices at large swirl numbers. J. Fluid Mech. 500, 239262.CrossRefGoogle Scholar
Fabre, D., Sipp, D. & Jacquin, L. 2006 The Kelvin waves and the singular modes of the Lamb–Oseen vortex. J. Fluid Mech. 551, 235274.CrossRefGoogle Scholar
Heaton, C. 2007 Centre modes in inviscid swirling flows, and their application to the stability of the Batchelor vortex. J. Fluid Mech. 576, 325348.CrossRefGoogle Scholar
Jiménez, J., Moffatt, H. K. & Vasco, C. 1996 The structure of the vortices in freely decaying two-dimensional turbulence. J. Fluid Mech. 313, 209222.CrossRefGoogle Scholar
Karniadakis, G. E., Israeli, M. & Orszag, S. A. 1991 High-order splitting methods of the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 414443.CrossRefGoogle Scholar
Kelvin, Lord. 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.Google Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Lacaze, L., Birbaud, A.-L. & Le Dizès, S. 2005 Elliptic instability in a Rankine vortex with axial flow. Phys. Fluids 17 017101.CrossRefGoogle Scholar
Le Dizès, S. 2000 a Non-axisymmetric vortices in two-dimensional flows. J. Fluid Mech. 406, 175198.CrossRefGoogle Scholar
Le Dizès, S. 2000 b Three-dimensional instability of a multipolar vortex in a rotating flow. Phys. Fluids 12 (11), 27622774.CrossRefGoogle Scholar
Le Dizès, S. 2004 Viscous critical-layer analysis of vortex normal modes. Stud. Appl. Maths 112, 315332.CrossRefGoogle Scholar
Le Dizès, S. & Lacaze, L. 2005 An asymptotic description of vortex Kelvin modes. J. Fluid Mech. 542, 6996.CrossRefGoogle Scholar
Le Dizès, S. & Laporte, F. 2002 Theoretical predictions for the elliptic instability in a two-vortex flow. J. Fluid Mech. 471, 169201.CrossRefGoogle Scholar
Le Dizès, S. & Verga, A. 2002 Viscous interaction of two co-rotating vortices before merging. J. Fluid Mech. 467, 389410.CrossRefGoogle Scholar
Lessen, M., Singh, P. J. & Paillet, F. 1974 The stability of a trailing line vortex. Part 1. Inviscid theory. J. Fluid Mech. 63 753763.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Loiseleux, T., Chomaz, J. & Huerre, P. 1998 The effect of swirl on jets and wakes: linear instability of the Rankine vortex with axial flow. Phys. Fluids 10, 11201134.CrossRefGoogle Scholar
Meunier, P. & Leweke, T. 2005 Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 125159.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.Google Scholar
Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 21572160.CrossRefGoogle Scholar
Ryan, K., Thompson, M. C. & Hourigan, K. 2005 Three-dimensional transition in the wake of elongated bluff bodies. J. Fluid Mech. 538, 129.CrossRefGoogle Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sipp, D. & Jacquin, L. 2003 Widnall instabilities in vortex pairs. Phys. Fluids 15, 18611874.CrossRefGoogle Scholar
Sipp, D., Jacquin, L. & Cossu, C. 2000 Self-adaptation and viscous selection in concentrated two-dimensional dipoles. Phys. Fluids 12 (2), 245248.CrossRefGoogle Scholar
Thompson, M., Leweke, T. & Provansal, M. 2001 a Kinematics and dynamics of sphere wake transition. J. Fluids Struct. 15, 575585.CrossRefGoogle Scholar
Thompson, M., Leweke, T. & Williamson, C. 2001 b The physical mechanism of transition in bluff body wakes. J. Fluids Struct. 15, 607616.CrossRefGoogle Scholar
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73, 721733.CrossRefGoogle Scholar
Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A 2 (1), 7680.CrossRefGoogle Scholar