Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T10:56:12.675Z Has data issue: false hasContentIssue false

Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a soft wall

Published online by Cambridge University Press:  14 August 2015

Thomas Salez
Affiliation:
School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138, USA PCT Lab, UMR CNRS 7083 Gulliver, ESPCI ParisTech, PSL Research University, 75005 Paris, France
L. Mahadevan*
Affiliation:
School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138, USA
*
Email address for correspondence: [email protected]

Abstract

We consider the motion of a fluid-immersed negatively buoyant particle in the vicinity of a thin compressible elastic wall, a situation that arises in a variety of technological and natural settings. We use scaling arguments to establish different regimes of sliding, and complement these estimates using thin-film lubrication dynamics to determine an asymptotic theory for the sedimentation, sliding and spinning motions of a cylinder. The resulting theory takes the form of three coupled nonlinear singular-differential equations. Numerical integration of the resulting equations confirms our scaling relations and further yields a range of unexpected behaviours. Despite the low-Reynolds-number feature of the flow, we demonstrate that the particle can spontaneously oscillate when sliding, can generate lift via a Magnus-like effect, can undergo a spin-induced reversal effect and also shows an unusual sedimentation singularity. Our description also allows us to address a sedimentation–sliding transition that can lead to the particle coasting over very long distances, similar to certain geophysical phenomena. Finally, we show that a small modification of our theory allows us to generalize the results to account for additional effects such as wall poroelasticity.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J., Cawthorn, C. J. & Craster, R. V. 2010 J. Fluid Mech. 646, 339.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Biot, M. A. 1941 J. Appl. Phys. 12, 155.Google Scholar
Brenner, H. 1962 J. Fluid Mech. 12, 35.CrossRefGoogle Scholar
Burridge, R. & Keller, J. B. 1981 J. Acoust. Soc. Am. 70, 1140.Google Scholar
Byun, S., Son, S., Amodei, D., Cermak, N., Shaw, J., Kang, J. H., Hecht, V. C., Winslow, M., Jacks, T., Mallick, P. & Manalis, S. R. 2013 Proc. Natl Acad. Sci. USA 110, 7580.Google Scholar
Campbell, C. S. 1989 J. Geol. 97, 653.CrossRefGoogle Scholar
Cawthorn, C. J. & Balmforth, N. J. 2010 J. Fluid Mech. 646, 327.Google Scholar
Davis, R. H., Serayssol, J.-M. & Hinch, E. J. 1986 Phys. Fluids 163, 479.Google Scholar
Dupeux, G., Cohen, C., Le Goff, A., Quéré, D. & Clanet, C. 2011 J. Fluids Struct. 27, 659.Google Scholar
Glenne, B. 1987 J. Tribology 109, 614.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967a Chem. Engng Sci. 22, 637.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967b Chem. Engng Sci. 22, 653.Google Scholar
Goldsmith, H. L. 1971 Fed Proc. 30, 1578.Google Scholar
Gondret, P., Hallouin, E., Lance, M. & Petit, L. 1999 Phys. Fluids 11, 2803.Google Scholar
Gopinath, A. & Mahadevan, L. 2011 Proc. R. Soc. Lond A 467, 1665.Google Scholar
Grodzinsky, A. J., Lipshitz, H. & Glimcher, M. J. 1978 Nature 275, 448.Google Scholar
Hocking, L. M. 1973 J. Engng Maths 7, 207.Google Scholar
Jeffrey, D. J. & Onishi, Y. 1981 Q. J. Mech. Appl. Maths 34, 129.Google Scholar
Johnson, K. L. 1985 Contact Mechanics. Cambridge University Press.Google Scholar
Ma, K.-F., Brodsky, E. E., Mori, J., Ji, C., Song, T.-R. A. & Kanamori, H. 2003 Geophys. Res. Lett. 30, 1244.CrossRefGoogle Scholar
Mani, M., Gopinath, A. & Mahadevan, L. 2012 Phys. Rev. Lett. 226104, 108.Google Scholar
Mow, V. C. & Guo, X. E. 2002 Annu. Rev. Biomed. Engng 4, 175.Google Scholar
Mow, V. C., Holmes, M. H. & Lai, W. M. 1984 J. Biomech. 17, 377.Google Scholar
Oron, A., Davis, S. & Bankoff, S. 1997 Rev. Mod. Phys. 69, 931.Google Scholar
Reynolds, O. 1886 Phil. Trans. R. Soc. Lond. A 177, 157.Google Scholar
Sekimoto, K. & Leibler, L. 1993 Europhys. Lett. 23, 113.Google Scholar
Sekimoto, K. & Rabin, Y. 1994 Europhys. Lett. 27, 445.Google Scholar
Skotheim, J. M. & Mahadevan, L. 2004a Phys. Rev. Lett. 92, 245509.CrossRefGoogle Scholar
Skotheim, J. M. & Mahadevan, L. 2004b Proc. R. Soc. Lond. A 460, 1995.Google Scholar
Skotheim, J. M. & Mahadevan, L. 2005 Phys. Fluids 17, 092101.Google Scholar
Snoeijer, J., Eggers, J. & Venner, C. H. 2013 Phys. Fluids 25, 101705.Google Scholar
Trahan, J. F. & Hussey, R. G. 1985 Phys. Fluids 28, 2961.Google Scholar
Weekley, S. J., Waters, S. L. & Jensen, O. E. 2006 Q. J. Mech. Appl. Maths 59, 277.Google Scholar
Wehbeh, E. G., Ui, T. J. & Hussey, R. G. 1993 Phys. Fluids 5, 25.CrossRefGoogle Scholar