Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T21:50:27.578Z Has data issue: false hasContentIssue false

Ejecta evolution during cone impact

Published online by Cambridge University Press:  07 July 2014

J. O. Marston*
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
S. T. Thoroddsen
Affiliation:
Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
*
Present address: Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409-3121, USA. Email address for correspondence: [email protected]

Abstract

We present findings from an experimental investigation into the impact of solid cone-shaped bodies onto liquid pools. Using a variety of cone angles and liquid physical properties, we show that the ejecta formed during the impact exhibits self-similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed to the air entrainment phenomenon. We analyse of a range of cone angles, including some ogive cones, and impact speeds in terms of the spatiotemporal evolution of the ejecta tip. Using superhydrophobic cones, we also examine the entry of cones which entrain an air layer.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, J. L.1971 Vertical water entry of cones NOLTR 71-25, available athttp://www.dtic.mil/dtic/tr/fulltext/u2/723821.pdf.Google Scholar
Burley, R. & Jolly, R. P. S. 1984 Entrainment of air into liquids by a high speed continuous solid surface. Chem. Engng Sci. 39, 13571372.Google Scholar
Burley, R. & Kennedy, S. B. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 39, 13571372.Google Scholar
Clanet, C. & Villermaux, E. 2002 Life of a smooth liquid sheet. J. Fluid Mech. 462, 307340.Google Scholar
De Backer, G., Vantorre, M., Beels, C., De Pre, J., Victor, S., De Rouck, J., Blommaert, C. & Van Paepegem, W. 2009 Experimental investigation of water impact on axisymmetric bodies. Appl. Ocean Res. 31, 143156.Google Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.Google Scholar
El Malki Alaoui, A., Neme, A., Tassin, A. & Jacques, N. 2012 Experimental study of coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds. Appl. Ocean Res. 37, 183197.CrossRefGoogle Scholar
Etoh, T. G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A. J. P., Ruckelshausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T. & Takano, Y. 2003 An image sensor which captures 100 consecutive frames at 1 000 000 f.p.s. IEEE Trans. Electron. Devices 50 (1), 144151.Google Scholar
Faltinsen, O. M. 1990 Sea Loads on Ships and Offshore Structures. Cambridge University Press.Google Scholar
Ghannam, M. T. & Esmail, M. N. 1993 Experimental study of the wetting of fibers. AIChE J. 39 (2), 361365.CrossRefGoogle Scholar
Greenhow, M. 1987 Water entry into initially calm water. Appl. Ocean Res. 9, 214223.Google Scholar
Gutoff, E. B. & Kendrick, C. E. 1987 Low flow limitis of coatability on a slide coater. AIChE J. 33, 141145.Google Scholar
Howison, S. D., Ockendon, J. R. & Wilson, S. K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.Google Scholar
Hughes, O. F. 1972 Solution of the wedge entry problem by numerical conformal mapping. J. Fluid Mech. 56, 173192.CrossRefGoogle Scholar
Iafrati, A. & Korobkin, A. A. 2004 Initial stage of flat plate impact onto liquid free surface. Phys. Fluids 16, 22142227.Google Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15, 16501657.Google Scholar
Judge, C., Troesch, A. & Perlin, M. 2004 Initial water impact of a wedge at vertical and oblique angles. J. Engng Maths 48, 279303.CrossRefGoogle Scholar
Korobkin, A. A. & Pukhnachov, V. V. 1988 Initial stage of water impact. Annu. Rev. Fluid Mech. 20, 159185.CrossRefGoogle Scholar
Lewis, S. G., Hudson, D. A., Turnock, S. R. & Taunton, D. J. 2010 Impact of a free-falling wedge with water: synchronised visualization, pressure and acceleration measurements. Fluid Dyn. Res. 42, 035509.CrossRefGoogle Scholar
Mackie, A. G. 1969 The water entry problem. Q. J. Mech. Appl. Maths XXII (1), 117.Google Scholar
Marston, J. O., Li, E. Q. & Thoroddsen, S. T. 2012a Evolution of fluid-like granular ejecta generated by sphere impact. J. Fluid Mech. 704, 536.Google Scholar
Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2012b Cavity formation by the impact of Leidenfrost spheres. J. Fluid Mech. 699, 465488.CrossRefGoogle Scholar
Moore, M. R., Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2012 Three-dimensional oblique water-entry problems at small deadrise angles. J. Fluid Mech. 711, 259280.Google Scholar
Moore, M. R., Howison, S. D., Ockendon, J. R. & Oliver, J. M. 2013 A note on oblique water entry. J. Engng Maths 81 (1), 6774.Google Scholar
Scolan, Y.-M. & Korobkin, A. A. 2001 Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. J. Fluid Mech. 440, 293326.Google Scholar
Semenov, Y. A. & Yoon, B.-S. 2009 Onset of flow separation for the oblique water impact of a wedge. Phys. Fluids 21, 112103.Google Scholar
Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C. & Pyatt, B. 2006 Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89, 104106.Google Scholar
Sikalo, S., Marengo, M., Tropea, C. & Ganic, E. N. 2002 Analysis of impact of droplets on horizontal surfaces. Exp. Therm. Fluid Sci. 25, 503510.CrossRefGoogle Scholar
Simpkins, P. G. & Kuck, V. J. 2003 On air entrainment in coatings. J. Colloid Interface Sci. 263, 562571.CrossRefGoogle ScholarPubMed
Thoraval, M.-J., Takehara, K., Etoh, T. G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. T. 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108, 264506.Google Scholar
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.Google Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Takano, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139148.Google Scholar
Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.CrossRefGoogle ScholarPubMed
Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. 2012 Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274277.CrossRefGoogle ScholarPubMed
Weiss, D. A. & Yarin, A. L. 1999 Single drop impact onto liquid films: neck distortion, jettin, tiny bubble entrapment, and crown formation. J. Fluid Mech. 385, 229254.Google Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.Google Scholar
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar
Zhang, L. V., Toole, J., Fezzaa, K. & Deegan, R. D. 2011 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 512.CrossRefGoogle Scholar

Marston and Thoroddsen supplementary movie

Video of a 45 degree cone impacting onto water at 1.36 m/s.

Download Marston and Thoroddsen supplementary movie(Video)
Video 101.6 KB

Marston and Thoroddsen supplementary movie

Video of a 45 degree cone impacting onto perfluorohexane at 4.24 m/s. Note the detachment of the eject tip and ensuing instability.

Download Marston and Thoroddsen supplementary movie(Video)
Video 109.1 KB

Marston and Thoroddsen supplementary movie

Video of the break-up of the entrained air layer for a 39 degree cone, half-coated with a hydrophobic agent. The impact speed is 3.6 m/s.

Download Marston and Thoroddsen supplementary movie(Video)
Video 216.3 KB

Marston and Thoroddsen supplementary movie

Video showing the early ejecta detachment - i.e. impact jetting. The cone angle is 132 degrees and the impact speed is 4.55 m/s

Download Marston and Thoroddsen supplementary movie(Video)
Video 33.6 KB