Published online by Cambridge University Press: 12 February 2014
The effects of surface corrugation with small amplitude on the growth of Tollmien–Schlichting (T–S) waves were examined experimentally in a zero-pressure-gradient boundary layer. Two- and three-dimensional corrugations of sinusoidal geometry with wavelengths of the same order as that of the two-dimensional T–S wave were considered. The corrugation amplitudes were one order of magnitude smaller than the boundary-layer displacement thickness. Streamwise growth of T–S waves on the corrugated walls was compared with that in the boundary layer on the smooth surface. A distinct difference was found in the destabilizing effect between the two- and three-dimensional corrugations. The two-dimensional corrugation significantly enhanced the growth of two-dimensional T–S waves even when the corrugation amplitude was only ∼10% of the displacement thickness. On decreasing the corrugation amplitude, the growth rate of two-dimensional T–S waves asymptotically approached that in the smooth-wall case. On the other hand, the three-dimensional corrugation had only a small influence on the growth of two-dimensional T–S waves even when the corrugation amplitude was as large as 20% of the displacement thickness. For three-dimensional corrugations, however, a pair of oblique waves was generated and developed by an interaction between the two-dimensional T–S wave and the corrugation-induced mean-flow distortion for the corrugation wavelength considered. On increasing the corrugation amplitude, the oblique waves generated were increased in amplitude and thus significantly influenced the secondary instability process.