Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T17:45:51.525Z Has data issue: false hasContentIssue false

Effects of bileaflet mechanical heart valve orientation on fluid stresses and coronary flow

Published online by Cambridge University Press:  29 September 2016

Laura Haya
Affiliation:
Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
Stavros Tavoularis*
Affiliation:
Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
*
Email address for correspondence: [email protected]

Abstract

The effects of the orientation of a bileaflet mechanical heart valve on the viscous and turbulent stresses in the flow past it and on the flow rate in the right coronary artery were investigated in vitro in a mock circulation loop, using a fluid that matched the kinematic viscosity of blood and the refractive index of the aorta model. Measurements were made past the valve mounted in three orientations at the base of an anatomical aorta model, within physiological aortic flow conditions. At peak flow, the turbulent stresses were on average 21 % higher and viscous stresses exceeding 10 Pa (namely of a level that has been associated with blood cell damage) were 30 % more frequent when the valve was oriented with its plane of symmetry normal to the aorta’s plane of curvature than when it was parallel to it. This was attributed to the impingement of a lateral jet on the concave wall of the aorta and to steeper velocity gradients resulting from the geometrical imbalance of the sinuses relative to the valve’s central jet when the valve was in the ‘normal’ orientation. Very high levels of turbulent stresses were found to occur distal to the corners of the valve’s lateral orifices. The bulk flow rate in the right coronary artery was highest when the valve was positioned with its central orifice aligned with the artery’s opening. The coronary flow rate was directly affected by the size, orientation and time evolution of the vortex in the sinus, all of which were sensitive to the valve’s orientation.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akutsu, T., Imai, R. & Deguchi, Y. 2005 Effect of the flow field of mechanical bileaflet mitral prostheses on valve closing. J. Artif. Organs 8 (3), 161170.CrossRefGoogle ScholarPubMed
Akutsu, T., Matsumoto, A. & Takahashi, K. 2011 In vitro study of the correlation between the aortic flow field affected by the bileaflet mechanical valves and coronary circulation. In 5th European Conference of the International Federation for Medical and Biological Engineering: 14–18 September 2011, Budapest, Hungary, pp. 769772. Springer.CrossRefGoogle Scholar
Akutsu, T., Saito, J., Imai, R., Suzuki, T. & Cao, X. D. 2008 Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. J. Artif. Organs 11 (2), 7590.CrossRefGoogle ScholarPubMed
Antiga, L. & Steinman, D. A. 2009 Rethinking turbulence in blood. Biorheology 46 (2), 7781.CrossRefGoogle ScholarPubMed
Aoyagi, N., Tanaka, I., Nishi, Y., Yamashita, M., Oryouji, A., Hara, T., Kosuga, K. & Ooishi, K. 1991 Long-term result of MRV by SJM valve. J. Jpn. Thorac. Cardiovasc. Surg. 39, 11261130.Google Scholar
Balducci, A., Grigioni, M., Querzoli, G., Romano, G. P., Daniele, C., D’Avenio, G. & Barbaro, V. 2004 Investigation of the flow field downstream of an artificial heart valve by means of PIV and PTV. Exp. Fluids 36 (204), 213.CrossRefGoogle Scholar
Bluestein, D., Li, Y. & Krukenkamp, I. 2002 Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35 (12), 15331540.CrossRefGoogle ScholarPubMed
Bluestein, D., Rambod, E. & Gharib, M. 2000 Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. Trans. ASME J. Biomech. Engng 122 (2), 125134.CrossRefGoogle ScholarPubMed
Borazjani, I., Ge, L. & Sotiropoulos, F. 2008 Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227 (16), 75877620.CrossRefGoogle ScholarPubMed
Borazjani, I., Ge, L. & Sotiropoulos, F. 2010 High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann. Biomed. Engng 38 (2), 326344.CrossRefGoogle Scholar
Borazjani, I. & Sotiropoulos, F. 2010 The effect of implantation orientation of a bileaflet mechanical heart valve on kinematics and hemodynamics in an anatomic aorta. Trans. ASME J. Biomech. Engng 132 (11), 111005.CrossRefGoogle Scholar
Bruss, K. H., Reul, H., Van Gilse, J. & Knott, E. 1982 Pressure drop and velocity fields at four mechanical heart valve prostheses: Bjork-Shiley Standard, Bjork-Shiley Concave-Convex, Hall-Kaster and St Jude Medical. Life Support Syst. 1 (1), 322.Google Scholar
Carroll, R. J. & Falsetti, H. L. 1976 Retrograde coronary-artery flow in aortic-valve disease. Circulation 54 (3), 494499.CrossRefGoogle ScholarPubMed
Chandran, K. B. 1985 Pulsatile flow past St Jude Medical bileaflet valve – an in vitro study. J. Thorac. Cardiovasc. Surg. 89 (5), 743749.CrossRefGoogle ScholarPubMed
Chandran, K. B. 1993 Flow dynamics in the human aorta. J. Biomech. Engng 115 (4), 611616.CrossRefGoogle ScholarPubMed
Dasi, L. P., Ge, L., Simon, H. A., Sotiropoulos, F. & Yoganathan, A. P. 2007 Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19 (6), 067105.CrossRefGoogle Scholar
Dasi, L. P., Murphy, D. W., Glezer, A. & Yoganathan, A. P. 2008 Passive flow control of bileaflet mechanical heart valve leakage flow. J. Biomech. 41 (6), 11661173.CrossRefGoogle ScholarPubMed
Dasi, L. P., Simon, H. A., Sucosky, P. & Yoganathan, A. P. 2009 Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36 (2), 225237.CrossRefGoogle ScholarPubMed
De Paulis, R., Tomai, F., Bertoldo, F., Ghini, A., Scaffa, R., Nardi, P. & Chiariello, L. 2004 Coronary flow characteristics after a Bentall procedure with or without sinuses of Valsalva. Eur. J. Cardio-Thorac. 26 (1), 6672.CrossRefGoogle ScholarPubMed
Dumont, K., Vierendeels, J., Kaminsky, R., Van Nooten, G., Verdonck, P. & Bluestein, D. 2007 Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Engng 129 (4), 558565.CrossRefGoogle ScholarPubMed
Exadactylos, N., Sugrue, D. D. & Oakley, C. M. 1984 Prevalence of coronary artery disease in patients with isolated aortic valve stenosis. Br. Heart J. 51, 121124.CrossRefGoogle ScholarPubMed
Friedman, M. H., Krams, R. & Chandran, K. B. 2010 Flow interactions with cells and tissues: cardiovascular flows and fluid-structure interactions. Ann. Biomed. Engng 38 (3), 11781187.CrossRefGoogle ScholarPubMed
Ge, L., Dasi, L. P., Sotiropoulos, F. & Yoganathan, A. P. 2008 Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds versus viscous stresses. Ann. Biomed. Engng 36 (2), 276297.CrossRefGoogle Scholar
Ge, L., Leo, H.-L., Sotiropoulos, F. & Yoganathan, A. P. 2005 Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Engng 127 (5), 782797.CrossRefGoogle Scholar
Gibson, C. M., Diaz, L., Kandarpa, K., Sacks, F. M., Pasternak, R. C., Sandor, T., Feldman, C. & Stone, P. H. 1993 Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler. Thromb. 13 (2), 310315.CrossRefGoogle ScholarPubMed
Haya, L.2015 Measurements of flow through a bileaflet mechanical heart valve in an anatomically accurate model of the aorta. PhD Dissertation, Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada.Google Scholar
Hutchison, C., Sullivan, P. & Ethier, C. R. 2011 Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med. Biol. Engng Comput. 49 (3), 325335.CrossRefGoogle ScholarPubMed
Johnston, G. G., Marzec, U. & Berstein, E. F. 1975 Effects of surface injury and shear stress on platelet aggregation and serotonin release. Trans. Am. Soc. Artif. Intern. Organs 21, 413421.Google ScholarPubMed
Jun, B. H., Saikrishnan, N. & Yoganathan, A. P. 2013 Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St Jude Medical® Regent™ mechanical heart valve. Ann. Biomed. Engng 42 (3), 526540.CrossRefGoogle ScholarPubMed
Kameneva, M. V., Burgreen, G. W., Kono, K., Repko, B., Antaki, J. F. & Umezu, M. 2004 Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50 (5), 418423.CrossRefGoogle ScholarPubMed
Kleine, P., Perthel, M., Nygaard, H., Hansen, S., Paulsen, P., Riis, C. & Laas, J. 1998 Medtronic Hall versus St Jude medical mechanical aortic valve: downstream turbulences with respect to rotation in pigs. J. Heart Valve Dis. 7 (5), 548555.Google ScholarPubMed
Kleine, P., Scherer, M., Abdel-Rahman, U., Klesius, A. A., Ackermann, H. & Moritz, A. 2002 Effect of mechanical aortic valve orientation on coronary artery flow: comparison of tilting disc versus bileaflet prostheses in pigs. J. Thorac. Cardiovasc. Surg. 124 (5), 925932.CrossRefGoogle ScholarPubMed
Klipstein, R. H., Firmin, D. N., Underwood, S. R., Rees, R. S. & Longmore, D. B. 1987 Blood flow patterns in the human aorta studied by magnetic resonance. Heart 58 (4), 316323.CrossRefGoogle ScholarPubMed
Lale, P., Toprak, U., Yagız, G., Kaya, T. & Uyanık, S. A. 2014 Variations in the branching pattern of the aortic arch detected with computerized tomography angiography. Adv. Radiology 2014 (2), 16.CrossRefGoogle Scholar
Le, T. B. & Sotiropoulos, F. 2013 Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244 (C), 4162.CrossRefGoogle ScholarPubMed
Liu, J., Lu, P. & Chu, S. 2000 Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Engng 122 (2), 118124.CrossRefGoogle ScholarPubMed
Luff, J. D., Drouillard, T., Rompage, A. M., Linne, M. A. & Hertzberg, J. R. 1999 Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms. Exp. Fluids 26 (1–2), 3654.CrossRefGoogle Scholar
Mächler, H., Perthel, M., Reiter, G., Reiter, U., Zink, M., Bergmann, P., Waltensdorfer, A. & Laas, J. 2004 Influence of bileaflet prosthetic mitral valve orientation on left ventricular flow an experimental in vivo magnetic resonance imaging study. Eur. J. Cardio-Thorac. 26 (4), 747753.CrossRefGoogle ScholarPubMed
Paszkowiak, J. J. & Dardik, A. 2003 Arterial wall shear stress: observations from the bench to the bedside. Vasc. Endovasc. Surg. 37 (1), 4757.CrossRefGoogle Scholar
Pibarot, P. & Dumesnil, J. G. 2009 Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119 (7), 10341048.CrossRefGoogle ScholarPubMed
Roberts, W. C. & Ko, J. M. 2009 Morphologic aspects of valvular heart disease. In Valvular Heart Disease (ed. Wang, A. & Bashore, M. T.), pp. 135. Humana Press.Google Scholar
Sheriff, J., Bluestein, D., Girdhar, G. & Jesty, J. 2010 High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Engng 38 (4), 14421450.CrossRefGoogle ScholarPubMed
Smith, R. L., Blick, E. F., Coalson, J. & Stein, P. D. 1972 Thrombus production by turbulence. J. Appl. Phys. 32 (2), 261264.Google ScholarPubMed
Sotiropoulos, F., Le, T. B. & Gilmanov, A. 2016 Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48 (1), 259283.CrossRefGoogle Scholar
Stein, P. D. & Sabbah, H. N. 1974 Measured turbulence and its effect on thrombus formation. Circ. Res. 35, 608614.CrossRefGoogle ScholarPubMed
de Tullio, M. D., Cristallo, A., Balaras, E. & Verzicco, R. 2009 Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J. Fluid Mech. 622, 259290.CrossRefGoogle Scholar
Wu, J., Yun, B. M., Fallon, A. M., Hanson, S. R., Aidun, C. K. & Yoganathan, A. P. 2010 Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Ann. Biomed. Engng 39 (2), 897910.CrossRefGoogle ScholarPubMed
Xenos, M., Girdhar, G., Alemu, Y., Jesty, J., Slepian, M., Einav, S. & Bluestein, D. 2010 Device thrombogenicity emulator (DTE) – design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43 (12), 24002409.CrossRefGoogle ScholarPubMed
Yoganathan, A., Leo, H., Travis, B. & Teoh, S.-H. 2003 9.07 – heart valve prostheses. In Comprehensive Structural Integrity (ed. Milne, I., Ritchie, R. O. & Karihaloo, B.), pp. 297328. Pergamon.CrossRefGoogle Scholar
Yoganathan, A. P., Chaux, A., Gray, R. J., Robertis, M. & Matloff, J. M. 1982 Flow characteristics of the St Jude prosthetic valve: an in vitro and in vivo study. Artif. Organs 6 (3), 288294.CrossRefGoogle ScholarPubMed
Yoganathan, A. P., He, Z. & Jones, S. C. 2004 Fluid mechanics of heart valves. Annu. Rev. Biomed. Engng 6, 331362.CrossRefGoogle ScholarPubMed
Yoganathan, A. P., Woo, Y.-R. & Sung, H.-W. 1986 Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses. J. Biomech. 19 (6), 433442.CrossRefGoogle ScholarPubMed
Yousif, M. Y., Holdsworth, D. W. & Poepping, T. L. 2009 Deriving a blood-mimicking fluid for particle image velocimetry in sylgard-184 vascular models. In 31st Annual International Conference of the IEEE EMBS, pp. 14. IEEE.Google Scholar
Yun, B. M., Dasi, L. P., Aidun, C. K. & Yoganathan, A. P. 2014a Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 743, 170201.CrossRefGoogle Scholar
Yun, B. M., Dasi, L. P., Aidun, C. K. & Yoganathan, A. P. 2014b Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 754, 122160.CrossRefGoogle Scholar