Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T23:55:30.924Z Has data issue: false hasContentIssue false

The effect of viscoelasticity on the turbulent kinetic energy cascade

Published online by Cambridge University Press:  31 October 2014

P. C. Valente*
Affiliation:
LAETA/IDMEC/Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
C. B. da Silva
Affiliation:
LAETA/IDMEC/Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
F. T. Pinho
Affiliation:
CEFT/FEUP, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations of statistically steady homogeneous isotropic turbulence in viscoelastic fluids described by the FENE-P model, such as those laden with polymers, are presented. It is shown that the strong depletion of the turbulence dissipation reported by previous authors does not necessarily imply a depletion of the nonlinear energy cascade. However, for large relaxation times, of the order of the eddy turnover time, the polymers remove more energy from the large scales than they can dissipate and transfer the excess energy back into the turbulent dissipative scales. This is effectively a polymer-induced kinetic energy cascade which competes with the nonlinear energy cascade of the turbulence leading to its depletion. It is also shown that the total energy flux to the small scales from both cascade mechanisms remains approximately the same fraction of the kinetic energy over the turnover time as the nonlinear energy cascade flux in Newtonian turbulence.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.Google Scholar
de Angelis, E., Casciola, C. M., Benzi, R. & Piva, R. 2005 Homogeneous isotropic turbulence in dilute polymers. J. Fluid Mech. 531, 110.CrossRefGoogle Scholar
de Angelis, E., Casciola, C. M. & Piva, R. 2012 Energy spectra in viscoelastic turbulence. Physica D 241, 297303.Google Scholar
Antonia, R. A. & Burattini, P. 2006 Approach to the $4/5$ law in homogeneous isotropic turbulence. J. Fluid Mech. 550, 175184.Google Scholar
Ashurst, Wm. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.Google Scholar
Balbovsky, E., Fouxon, A. & Lebedev, V. 2001 Turbulence of polymer solutions. Phys. Rev. E 64, 056301.Google Scholar
Benzi, R., Ching, E. S. C. & de Angelis, E. 2010 Effect of polymer additives on heat transport in turbulent thermal convection. Phys. Rev. Lett. 104, 024502.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987a Dynamics of Polymeric Liquids, vol. I, 2nd edn. John Wiley & Sons Inc.Google Scholar
Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987b Dynamics of Polymeric Liquids, vol. II, 2nd edn. John Wiley & Sons Inc.Google Scholar
Boffetta, G., Mazzino, A., Musacchio, S. & Vozella, L. 2010 Polymer heat transport enhancement in thermal convection: the case of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 104, 184501.CrossRefGoogle ScholarPubMed
Brasseur, J. G., Robert, A., Collins, L. R. & Vaithianathan, T.2005 Fundamental physics underlying polymer drag reduction, from homogeneous DNS turbulence with the FENE-P model. In 2nd International Symposium on Seawater Drag Reduction, Busan, Korea, 23–26 May.Google Scholar
Burattini, P., Lavoie, P. & Antonia, R. A. 2005 On the normalized turbulent energy dissipation rate. Phys. Fluids 17, 098103.Google Scholar
Cai, W.-H., Li, F.-C. & Zhang, H.-N. 2010 DNS study of decaying homogeneous isotropic turbulence with polymer additives. J. Fluid Mech. 665, 334356.CrossRefGoogle Scholar
Casciola, C. M. & de Angelis, E. 2007 Energy transfer in turbulent polymer solutions. J. Fluid Mech. 581, 419436.Google Scholar
Dallas, V., Vassilicos, J. C. & Hewitt, G. F. 2010 Strong polymer–turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E 82, 066303.Google Scholar
De Lillo, F., Boffetta, G. & Musacchio, S. 2012 Control of particle clustering in turbulence by polymer additives. Phys. Rev. E 85, 036308.CrossRefGoogle ScholarPubMed
Dimitropoulos, C. D., Sureshkumar, R., Beris, A. N. & Handler, R. A. 2001 Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow. Phys. Fluids 13 (4), 10161027.Google Scholar
Dubief, Y., Terrapon, V. E. & Soria, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids 25, 110817.Google Scholar
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.Google Scholar
Fouxon, A. & Lebedev, V. 2003 Spectra of turbulence in dilute polymer solution. Phys. Fluids 15, 20602072.Google Scholar
Frisch, U. 1995 Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
de Gennes, P. G. 1990 Introduction to Polymer Dynamics. Cambridge University Press.Google Scholar
Horiuti, K., Matsumoto, K. & Fujiwara, K. 2013 Remarkable drag reduction in non-affine viscoelastic turbulent flows. Phys. Fluids 25, 015106.Google Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.CrossRefGoogle Scholar
Jimenez, J. 1992 Kinematic alignment effects in turbulent flows. Phys. Fluids 4, 652654.Google Scholar
Jin, S.2007 Numerical simulations of a dilute polymer solution in isotropic turbulence. PhD thesis, Cornell University.Google Scholar
Jin, S. & Collins, L. R. 2007 Dynamics of dissolved polymer chains in isotropic turbulence. New J. Phys. 9, 360.Google Scholar
Lamorgese, A. G., Caughey, D. A. & Pope, S. B. 2005 Direct numerical simulation of homogeneous turbulence with hyperviscosity. Phys. Fluids 17, 015106.Google Scholar
Li, F.-C. & Kawaguchi, Y. 2004 Investigation on the characteristics of turbulence transport for momentum and heat in a drag-reducing surfactant solution flow. Phys. Fluids 16 (9), 32813295.Google Scholar
Liberzon, A., Holzner, M., Lüthi, B., Guala, M. & Kinzelbach, W. 2009 On turbulent entrainment and dissipation in dilute polymer solutions. Phys. Fluids 21, 035107.Google Scholar
Liu, Y., Jun, Y. & Steinberg, V. 2009 Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions. J. Rheol. 53 (5), 10691085.Google Scholar
Lumley, J. L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367384.Google Scholar
Lumley, J. L. 1973 Drag reduction in turbulent flow by polymer additives. J. Polym. Sci. 7, 263290.Google Scholar
Lundgren, T. S. 2003 Linearly forced isotropic turbulence. In Annual Research Briefs, Center for Turbulence Research.Google Scholar
L’Vov, V. S., Pomyalov, A., Procaccia, I. & Tiberkevich, V. 2005 Polymer stress tensor in turbulent shear flows. Phys. Rev. E 71, 016305.CrossRefGoogle ScholarPubMed
McComb, W. D., Berera, A., Salewski, M. & Yoffe, S. 2010 Taylor’s (1935) dissipation surrogate reinterpreted. Phys. Fluids 22, 061704.Google Scholar
Min, T., Yoo, J. Y., Choi, H. & Joseph, D. D. 2003 Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Mósca, A.2012 Energy cascade analysis in a viscoelastic turbulent flow. Master’s thesis, Instituto Superior Técnico, University of Lisbon (https://fenix.tecnico.ulisboa.pt/downloadFile/ 395144977752/dissertacao.pdf ).Google Scholar
Nie, Q. & Tanveer, S. 1999 A note on third-order structure functions in turbulence. Proc. R. Soc. Lond. A 455, 16151635.Google Scholar
Ouellette, N. T., Xu, H. & Bodenschatz, E. 2009 Bulk turbulence in dilute polymer solutions. J. Fluid Mech. 629, 375385.Google Scholar
Page, J. & Zaki, T. A. 2014 Streak evolution in viscoelastic Couette flow. J. Fluid Mech. 742, 520551.Google Scholar
Perlekar, P., Mitra, D. & Pandit, R. 2006 Manifestations of drag reduction by polymer additives in decaying, homogeneous, isotropic turbulence. Phys. Rev. Lett. 97, 264501.Google Scholar
Perlekar, P., Mitra, D. & Pandit, R. 2010 Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives. Phys. Rev. E 82, 066313.Google Scholar
Procaccia, I., L’Vov, V. S. & Benzi, R. 2008 Colloquium: Theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80, 225247.Google Scholar
Qian, J. 1999 Slow decay of the finite Reynolds number effect of turbulence. Phys. Rev. E 60 (3), 34093412.CrossRefGoogle ScholarPubMed
Robert, A., Vaithianathan, T., Collins, L. R. & Brasseur, J. G. 2010 Polymer-laden homogeneous shear-driven turbulent flow: a model for polymer drag reduction. J. Fluid Mech. 657, 189226.Google Scholar
da Silva, C. B. & Pereira, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20, 055101.Google Scholar
Stone, P. A., Waleffe, F. & Graham, M. D. 2001 Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows. Phys. Rev. Lett. 89, 208301.Google Scholar
Tabor, M. & de Gennes, P. G. 1986 A cascade theory of drag reduction. Europhys. Lett. 2 (7), 519522.Google Scholar
Tchoufag, J., Sagaut, P. & Cambon, C. 2012 Spectral approach to finite Reynolds number effects on Kolmogorov’s $4/5$ law in isotropic turbulence. Phys. Fluids 24, 015107.Google Scholar
Terrapon, V. E., Dubief, Y., Moin, P., Shaqfeh, E. S. G. & Lele, S. K. 2004 Simulated polymer stretch in a turbulent flow using brownian dynamics. J. Fluid Mech. 504, 6171.Google Scholar
Thais, L., Tejada-Martínez, A. E., Gatski, T. B. & Mompean, G. 2010 Temporal large eddy simulations of turbulent viscoelastic drag reduction flows. Phys. Fluids 22, 013103.Google Scholar
Tsinober, A., Kit, E. & Dracos, T. 1992 Experimental investigation of the field of velocity gradients in turbulent flows. J. Fluid Mech. 242, 169192.Google Scholar
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140 (1–3), 322.Google Scholar
Vonlanthen, R. & Monkewitz, P. A. 2013 Grid turbulence in dilute polymer solutions: PEO in water. J. Fluid Mech. 730, 7698.Google Scholar
Watanabe, T. & Gotoh, T. 2013 Hybrid Eulerian–Lagrangian simulations for polymer–turbulence interactions. J. Fluid Mech. 717, 535575.Google Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.Google Scholar
Xi, H.-D., Bodenschatz, E. & Xu, H. 2013 Elastic energy flux by flexible polymers in fluid turbulence. Phys. Rev. Lett. 111, 024501.Google Scholar