Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T16:12:25.617Z Has data issue: false hasContentIssue false

Effect of trailing-edge shape on the self-propulsive performance of heaving flexible plates

Published online by Cambridge University Press:  21 January 2020

Chengyao Zhang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Haibo Huang
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
Xi-Yun Lu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, PR China
*
Email address for correspondence: [email protected]

Abstract

The effect of trailing-edge shape on the self-propulsive performance of three-dimensional flexible plates is studied numerically. In our study, the trailing edges of the plates are symmetric chevron shapes, and the trailing-edge angle $\unicode[STIX]{x1D719}$ varies from $30^{\circ }$ (concave plate) to $150^{\circ }$ (convex plate). Under different bending stiffnesses $K$, three regimes of the propulsive performance in terms of propulsive velocity $U$ and efficiency $\unicode[STIX]{x1D702}$ as a function of $\unicode[STIX]{x1D719}$ are identified. When $K$ is small, moderate and large, the square, convex and concave plate achieves the best performance, respectively. Analyses of vortical structures and velocity fields show that usually the jet behind the plate with the best performance is longest. Besides, the inclination angle of the jet may be small. The different propulsive performances at small and moderate $K$ are mainly attributed to the phase lag of the trailing edge. The force acting on the plate is analysed and it is found that the thrust force is mainly contributed by the normal force. If $U$, $\unicode[STIX]{x1D702}$ and $K$ are rescaled by the normal force and the area moment of the plate, the curves for different $\unicode[STIX]{x1D719}$ almost collapse into a single curve when the bending stiffness coefficient is small or moderate. The scaling confirms that the normal force should be the characteristic fluid force at small or moderate $K$ and the $\unicode[STIX]{x1D719}$ effect is governed by the area moment. The findings may shed some light on the propulsive performance of aquatic animals.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355380.CrossRefGoogle Scholar
Alben, S. & Shelley, M. 2005 Coherent locomotion as an attracting state for a free flapping body. Proc. Natl Acad. Sci. USA 102 (32), 1116311166.CrossRefGoogle ScholarPubMed
Alben, S., Witt, C., Baker, T. V., Anderson, E. & Lauder, G. V. 2012 Dynamics of freely swimming flexible foils. Phys. Fluids 24 (5), 051901.CrossRefGoogle Scholar
Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Bhat, S. S., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M. C. 2019 Uncoupling the effects of aspect ratio, Reynolds number and Rossby number on a rotating insect-wing planform. J. Fluid Mech. 859, 921948.CrossRefGoogle Scholar
Blake, R. W. 1983 Fish Locomotion. Cambridge University Press.Google Scholar
Brodsky, A. K. 1994 The Evolution of Insect Flight. Oxford University Press.Google Scholar
Buchholz, J. H. J. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.CrossRefGoogle ScholarPubMed
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
Chopra, M. G. 1974 Hydromechanics of lunate-tail swimming propulsion. J. Fluid Mech. 64 (2), 375392.CrossRefGoogle Scholar
Combes, S. A. & Daniel, T. L. 2003 Flexural stiffness in insect wings II. Spatial distribution and dynamic wing bending. J. Expl Biol. 206 (17), 29892997.CrossRefGoogle ScholarPubMed
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.CrossRefGoogle Scholar
Dhanak, M. R. & Bernardinis, B. D. E. 1981 The evolution of an elliptic vortex ring. J. Fluid Mech. 109, 189216.CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Doyle, J. F. 2001 Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability. Springer.CrossRefGoogle Scholar
Eldredge, J. D., Toomey, J. & Medina, A. 2010 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94115.CrossRefGoogle Scholar
von Ellenrieder, K. D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129138.CrossRefGoogle Scholar
Ellington, C. P. 1984 The aerodynamics of hovering insect flight. II. Morphological parameters. Phil. Trans. R. Soc. Lond. B 305 (1122), 1740.CrossRefGoogle Scholar
Ferreira de Sousa, P. J. S. A. & Allen, J. J. 2011 Thrust efficiency of harmonically oscillating flexible flat plates. J. Fluid Mech. 674, 4366.CrossRefGoogle Scholar
Fierstine, H. L. & Walters, V. 1968 Studies in locomotion and anatomy of scombroid fishes. Mem. South. Calif. Acad. Sci. 6, 131.Google Scholar
Fish, F. E. & Lauder, G. V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38, 193224.CrossRefGoogle Scholar
Floryan, D., Van Buren, T., Rowley, C. W. & Smits, A. J. 2017 Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. 822, 386397.CrossRefGoogle Scholar
Gao, T. & Lu, X.-Y. 2008 Insect normal hovering flight in ground effect. Phys. Fluids 20 (8), 087101.CrossRefGoogle Scholar
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 (2), 354366.CrossRefGoogle Scholar
Green, M. A., Rowley, C. W. & Smits, A. J. 2011 The unsteady three-dimensional wake produced by a trapezoidal pitching panel. J. Fluid Mech. 685, 117145.CrossRefGoogle Scholar
Heathcote, S. & Gursul, I. 2007 Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 45 (5), 10661079.CrossRefGoogle Scholar
Heathcote, S., Wang, Z. & Gursul, I. 2008 Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24 (2), 183199.CrossRefGoogle Scholar
Hoover, A. P., Cortez, R., Tytell, E. D. & Fauci, L. J. 2018 Swimming performance, resonance and shape evolution in heaving flexible panels. J. Fluid Mech. 847, 386416.CrossRefGoogle Scholar
Hua, R.-N., Zhu, L. & Lu, X.-Y. 2013 Locomotion of a flapping flexible plate. Phys. Fluids 25 (12), 121901.CrossRefGoogle Scholar
Hua, R.-N., Zhu, L. & Lu, X.-Y. 2014 Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech. 759, 5672.CrossRefGoogle Scholar
Huang, H.-B., Wei, H. & Lu, X.-Y. 2018 Coupling performance of tandem flexible inverted flags in a uniform flow. J. Fluid Mech. 837, 461476.CrossRefGoogle Scholar
Huang, W.-X., Chang, C. B. & Sung, H. J. 2011 An improved penalty immersed boundary method for fluid–flexible body interaction. J. Comput. Phys. 230 (12), 50615079.CrossRefGoogle Scholar
Huang, W.-X. & Sung, H. J. 2010 Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301336.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kang, C.-K., Aono, H., Cesnik, C. E. S. & Shyy, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.CrossRefGoogle Scholar
Karpouzian, G., Spedding, G. & Cheng, H. K. 1990 Lunate-tail swimming propulsion. Part 2. Performance analysis. J. Fluid Mech. 210, 329351.CrossRefGoogle Scholar
Kern, S. & Koumoutsakos, P. 2006 Simulations of optimized anguilliform swimming. J. Expl Biol. 209 (24), 48414857.CrossRefGoogle ScholarPubMed
Lauder, G. V. 2000 Function of the caudal fin during locomotion in fishes: kinematics, flow visualization, and evolutionary patterns. Am. Zool. 40 (1), 101122.Google Scholar
Lauder, G. V., Lim, J., Shelton, R., Witt, C., Anderson, E. & Tangorra, J. L. 2011 Robotic models for studying undulatory locomotion in fishes. Mar. Technol. Soc. J. 45 (4), 4155.CrossRefGoogle Scholar
Lauder, G. V. & Tytell, E. D. 2005 Hydrodynamics of undulatory propulsion. Fish Physiol. 23, 425468.CrossRefGoogle Scholar
Li, G.-J., Zhu, L. & Lu, X.-Y. 2012 Numerical studies on locomotion performance of fish-like tail fins. J. Hydrodyn. B 24 (4), 488495.Google Scholar
Lu, X.-Y., Yin, X.-Z. & Tong, B.-G. 2008 Studies of hydrodynamics in fishlike swimming propulsion. In Bio-Mechanisms of Swimming and Flying, pp. 143154. Springer.CrossRefGoogle Scholar
Michelin, S. & Llewellyn Smith, S. G. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21 (7), 071902.CrossRefGoogle Scholar
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.CrossRefGoogle Scholar
Paraz, F., Schouveiler, L. & Eloy, C. 2016 Thrust generation by a heaving flexible foil: resonance, nonlinearities, and optimality. Phys. Fluids 28 (1), 011903.CrossRefGoogle Scholar
Peng, Z.-R., Huang, H.-B. & Lu, X.-Y. 2018 Hydrodynamic schooling of multiple self-propelled flapping plates. J. Fluid Mech. 853, 587600.CrossRefGoogle Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Piñeirua, M., Thiria, B. & Godoy-Diana, R. 2017 Modelling of an actuated elastic swimmer. J. Fluid Mech. 829, 731750.CrossRefGoogle Scholar
Quinn, D. B., Lauder, G. V. & Smits, A. J. 2014 Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250267.CrossRefGoogle Scholar
Quinn, D. B., Lauder, G. V. & Smits, A. J. 2015 Maximizing the efficiency of a flexible propulsor using experimental optimization. J. Fluid Mech. 767, 430448.CrossRefGoogle Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108 (15), 59645969.CrossRefGoogle ScholarPubMed
Shyy, W., Aono, H., Chimakurthi, S. K., Trizila, P., Kang, C.-K., Cesnik, C. E. S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.CrossRefGoogle Scholar
Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H. 2007 Aerodynamics of Low Reynolds Number Flyers, vol. 22. Cambridge University Press.Google Scholar
Tang, C., Huang, H.-B., Gao, P. & Lu, X.-Y. 2016 Self-propulsion of a flapping flexible plate near the ground. Phys. Rev. E 94 (3), 033113.Google ScholarPubMed
Tang, C., Liu, N.-S. & Lu, X.-Y. 2015 Dynamics of an inverted flexible plate in a uniform flow. Phys. Fluids 27 (7), 073601.CrossRefGoogle Scholar
Tian, F. B., Luo, H., Zhu, L., Liao, J. C. & Lu, X.-Y. 2011 An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230 (19), 72667283.CrossRefGoogle ScholarPubMed
Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A 3 (12), 28352837.CrossRefGoogle Scholar
Van Buren, T., Floryan, D., Brunner, D., Senturk, U. & Smits, A. J. 2017 Impact of trailing edge shape on the wake and propulsive performance of pitching panels. Phys. Rev. Fluids 2 (1), 014702.Google Scholar
Van Eysden, C. A. & Sader, J. E. 2006 Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J. Appl. Phys. 100 (11), 114916.CrossRefGoogle Scholar
Vandenberghe, N., Zhang, J. & Childress, S. 2004 Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506, 147155.CrossRefGoogle Scholar
Videler, J. J. 2012 Fish Swimming. Springer.Google Scholar
Westneat, M. W. & Wainwright, S. A. 2001 7. Mechanical design for swimming: muscle, tendon, and bone. Fish Physiol. 19, 271311.CrossRefGoogle Scholar
Wilga, C. A. D. & Lauder, G. V. 2004 Biomechanics of locomotion in sharks, rays, and chimeras. In Biology of Sharks and their Relatives, pp. 139164. CRC Press.CrossRefGoogle Scholar
Wootton, R. J. 1999 Invertebrate paraxial locomotory appendages: design, deformation and control. J. Expl Biol. 202 (23), 33333345.Google ScholarPubMed
Yeh, P. D. & Alexeev, A. 2014 Free swimming of an elastic plate plunging at low Reynolds number. Phys. Fluids 26 (5), 053604.CrossRefGoogle Scholar
Zhang, C. Y., Huang, H.-B. & Lu, X.-Y. 2017a Free locomotion of a flexible plate near the ground. Phys. Fluids 29 (4), 041903.CrossRefGoogle Scholar
Zhang, J., Liu, N.-S. & Lu, X.-Y. 2010 Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 4368.CrossRefGoogle Scholar
Zhang, Y., Zhou, C. & Luo, H. 2017b Effect of mass ratio on thrust production of an elastic panel pitching or heaving near resonance. J. Fluids Struct. 74, 385400.CrossRefGoogle Scholar
Zhu, X., He, G. & Zhang, X. 2014 How flexibility affects the wake symmetry properties of a self-propelled plunging foil. J. Fluid Mech. 751, 164183.CrossRefGoogle Scholar