Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T11:53:55.120Z Has data issue: false hasContentIssue false

The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet

Published online by Cambridge University Press:  26 April 2007

MEHMET B. ALKISLAR*
Affiliation:
Department of Mechanical Engineering, 2525 Pottsdamer Street, Florida A&M University and Florida State University, Tallahassee, FL 32310, USA
A. KROTHAPALLI
Affiliation:
Department of Mechanical Engineering, 2525 Pottsdamer Street, Florida A&M University and Florida State University, Tallahassee, FL 32310, USA
G. W. BUTLER
Affiliation:
The Boeing Company, PO Box 3307 MC ML-67, Seattle, WA 98124, USA

Abstract

The role of the streamwise vortices on the aeroacoustics of a Mach 0.9 axisymmetric jet is investigated using two different devices to generate streamwise vortices: microjets and chevrons. The resultant acoustic field is mapped by sideline microphones and a microphone phased array. The flow-field characteristics within the first few diameters of the nozzle exit are obtained using stereoscopic particle image velocimetry (PIV). The flow-field measurements reveal that the counter-rotating streamwise vortex pairs generated by microjets are located primarily at the high-speed side of the initial shear layer. In contrast, the chevrons generate vortices of greater strength that reside mostly on the low-speed side. Although the magnitude of the chevron's axial vorticity is initially higher, it decays more rapidly with downstream distance. As a result, their influence is confined to a smaller region of the jet. The axial vorticity generated by both devices produces an increase in local entrainment and mixing, increasing the near-field turbulence levels. It is argued that the increase in high-frequency sound pressure levels (SPL) commonly observed in the far-field noise spectrum is due to the increase in the turbulence levels close to the jet exit on the high-speed side of the shear layer. The greater persistence and lower strength of the streamwise vortices generated by microjets appear to shift the cross-over frequencies to higher values and minimize the high-frequency lift in the far-field spectrum. The measured overall sound pressure level (OASPL) shows that microjet injection provides relatively uniform noise suppression for a wider range of sound radiation angles when compared to that of a chevron nozzle.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFRENCES

Alkislar, M. B., Lourenco, L. M. & Krothapalli, A. 2000 Stereoscopic PIV measurements of a screeching supersonic jet. J. Visualization \3, 135143.CrossRefGoogle Scholar
Alkislar, M. B., Krothapalli, A. & Lourenco, L. M. 2003 Structure of a screeching rectangular jet: a stereoscopic PIV study. J. Fluid Mech. 489, 121154.CrossRefGoogle Scholar
Alkislar, M. B., Krothapalli, A., Choutapalli, I. & Lourenco, L. M. 2005 Structure of supersonic twin jets. AIAA J. 43, 23092318.CrossRefGoogle Scholar
Arakeri, V. H., Krothapalli, A., Siddavaram, V., Alkislar, M. B. & Lourenco, L. M. 2003 On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet. J. Fluid Mech. 490, 7598.CrossRefGoogle Scholar
Bohl, D. & Foss, J. F. 1999 Near exit plane effects caused by primary and primary-plus-secondary tabs. AIAA J. 37, 192201.CrossRefGoogle Scholar
Bridges, J. & Brown, C. A. 2004 Parametric testing of chevrons on single flow hot jets. AIAA Paper 04-2824.CrossRefGoogle Scholar
Bridges, J. & Wernet, M. P. 2002 Turbulence measurements of separate flow nozzles with mixing enhancement features. AIAA Paper 02-2484.CrossRefGoogle Scholar
Bridges, J., Wernet, M. P. & Brown, C. A. 2003 Control of jet noise through mixing enhancement NASA TM 2003-212335.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structures in turbulent mixing layers. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Coiffet, F. 2006 Étude de l'acoustique en champ proche des jets de moteur-fusée. PhD thesis, Université de Poitiers, France (in preparation).Google Scholar
Cortelezzi, L. & Karagozian, A. T. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.CrossRefGoogle Scholar
Crighton, D. G. 1981 Acoustics as a branch of fluid mechanics. J. Fluid Mech. 106, 261298.CrossRefGoogle Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.CrossRefGoogle Scholar
Eroglu, A. & Breidenthal, R. E. 2001 Structure, penetration, and mixing of pulsed jets in crossflow. AIAA J. 39, 417423.CrossRefGoogle Scholar
Foss, J. K. & Zaman, K. B. M. Q. 1999 Large- and small-scale vortical motions in a shear layer perturbed by tabs. J. Fluid Mech. 382, 307329.CrossRefGoogle Scholar
Fric, T. F. & Roshko, A. 1994 The structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Greska, B., Krothapalli, A., Seiner, J., Jansen, B. & Ukeiley, J. 2005 The effects of microjet injection on an F404 jet engine. AIAA Paper 2005-3047.CrossRefGoogle Scholar
Hasselbrink, E. F. Jr & Mungal, M. G. 2001 Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets. J. Fluid Mech. 443, 125.CrossRefGoogle Scholar
Johari, H. & Rixon, G. 2003 Effects of pulsing on a vortex generator jet. AIAA J. 41, 23092315.CrossRefGoogle Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Krothapalli, A., Greska, B. & Arakeri, V. 2002 High-speed jet noise reduction using microjets. AIAA Paper 2002-2450.CrossRefGoogle Scholar
Krothapalli, A., Choutapalli, I., Alkislar, M. B. & Lourenco, L. M. 2003 Aeroacoustics of twin supersonic impinging jets. AIAA Paper 2003-3316.CrossRefGoogle Scholar
Krothapalli, A., Arakeri, V. & Greska, B. 2004 Mach wave radiation: a review and an extension. AIAA Paper 2004-1200.CrossRefGoogle Scholar
Lourenco, L. M. & Krothapalli, A. 2000 True resolution PIV: a mesh-free second-order accurate algorithm. Proc. 10th Intl Symp. on Applications of Laser Techniques in Fluid Mechanics.Google Scholar
Moore, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80, 321367.CrossRefGoogle Scholar
NACA 1953 Equations, tables, and charts for compressible flow. NACA Rep. pp. 1–69.Google Scholar
Opalski, A. B., Wernet, M. P. & Bridges, J. E. 2005 Chevron nozzle performance characterization using stereoscopic PIV. AIAA Paper 2005-0444.CrossRefGoogle Scholar
Peterson, S. D. & Plesniak, M. W. 2004 Evolution of jets emanationg from short holes into crossflow. J. Fluid Mech. 503, 5791.CrossRefGoogle Scholar
Saiyed, N. H., Mikkelsen, K. L. & Bridges, J. E. 2003 Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles. AIAA J. 372–378.CrossRefGoogle Scholar
Tam, C. K. W. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 1743.CrossRefGoogle Scholar
Underbrink, J. R. 2001 Circularly symmetric, zero redundancy, planar array having broad frequency range application. US Patent No. 6 205 224 2001.Google Scholar
Underbrink, J. R. 2002 Aeroacoustic phased array testing in low speed wind tunnels. In Aeroacoustic Measurements (ed. Mueller, T. L.). Springer.Google Scholar