Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T15:50:10.572Z Has data issue: false hasContentIssue false

Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow

Published online by Cambridge University Press:  30 November 2015

Braden Snook
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
Jason E. Butler*
Affiliation:
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
Élisabeth Guazzelli
Affiliation:
Aix-Marseille Université, CNRS, IUSTI UMR 7343, 13453 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

The large-amplitude oscillatory flow of a suspension of spherical particles in a pipe is studied at low Reynolds number. Particle volume fraction and velocity are examined through refractive index matching techniques. The particles migrate toward the centre of the pipe, i.e. toward regions of lower shear rate, for bulk volume fractions larger than 10 %. Steady results are in agreement with available experimental results and discrete-particle simulations for similar geometries. The dynamics of the shear-induced migration process are analysed and compared against the predictions of the suspension balance model using realistic rheological laws.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altobelli, S. A., Givler, R. C. & Fukushima, E. 1991 Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. J. Rheol. 35, 721734.Google Scholar
Blanc, F., Lemaire, E., Meunier, A. & Peters, F. 2013 Microstructure in sheared non-Brownian concentrated suspensions. J. Rheol. 57, 273292.CrossRefGoogle Scholar
Boyer, F., Guazzelli, É. & Pouliquen, O. 2011a Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.CrossRefGoogle ScholarPubMed
Boyer, F., Pouliquen, O. & Guazzelli, E. 2011b Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.CrossRefGoogle Scholar
Bricker, J. M. & Butler, J. E. 2006 Oscillatory shear of suspensions of noncolloidal particles. J. Rheol. 50, 711728.CrossRefGoogle Scholar
Bricker, J. M. & Butler, J. E. 2007 Correlation between stresses and microstructure in concentrated suspensions of non-Brownian spheres subject to unsteady shear flows. J. Rheol. 514, 735759.CrossRefGoogle Scholar
Butler, J. E. & Bonnecaze, R. T. 1999 Imaging of particle shear migration with electrical impedance tomography. Phys. Fluids 11 (8), 19821994.CrossRefGoogle Scholar
Butler, J. E., Majors, P. D. & Bonnecaze, R. T. 1999 Observations of shear-induced particle migration for oscillatory flow of a suspension within a tube. Phys. Fluids 11 (10), 28652877.CrossRefGoogle Scholar
Chapman, B. K.1990 Shear induced migration in concentrated suspensions. PhD thesis, University of Notre Dame.Google Scholar
Chow, A. W., Sinton, S. W., Iwamiya, J. H. & Stephens, T. S. 1994 Shear-induced particle migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys. Fluids 6, 25612576.Google Scholar
Couturier, E., Boyer, F., Pouliquen, O. & Guazzelli, E. 2011 Suspensions in a tilted trough: second normal stress difference. Phys. Fluids 686, 2639.Google Scholar
Cunha, F. D. & Hinch, E. 1996 Shear-induced dispersion in a dilute suspension of rough spheres. J. Fluid Mech. 309, 211223.Google Scholar
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.CrossRefGoogle Scholar
Deshpande, K. P. & Shapley, N. C. 2010 Particle migration in oscillatory torsional flows of concentrated suspensions. J. Rheol. 54, 663686.Google Scholar
Gadala-Maria, F. & Acrivos, A. 1980 Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24, 799814.CrossRefGoogle Scholar
Gallier, S.2014 Simulation numérique des suspensions frictionnelles. Application aux propergols solides. PhD Université de Nice.Google Scholar
Gallier, S., Lemaire, E., Peters, F. & Lobry, L. 2014 Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech. 757, 514549.CrossRefGoogle Scholar
Goddard, J. D. 2006 A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech. 568, 117.CrossRefGoogle Scholar
Guasto, J., Ross, A. & Gollub, J. 2010 Hydrodynamic irreversibility in particle suspensions with nonuniform strain. Phys. Rev. Lett. 81 (6), 061401.Google ScholarPubMed
Hampton, R. E., Mammoli, A. A., Graham, A. L., Tetlow, N. & Altobell, S. A. 1997 Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41, 621640.Google Scholar
Karnis, A., Goldsmith, H. & Mason, S. 1966 The kinetics of flowing dispersions: I. Concentrated suspensions of rigid particles. J. Colloid Interface Sci. 22 (6), 531553.Google Scholar
Koh, C. J. & Leal, L. G. 1994 An experimental investigation of concentrated suspension flows in rectangular channel. J. Fluid Mech. 266, 132.Google Scholar
Kolli, V., Pollauf, E. & Gadala-Maria, F. 2002 Transient normal stress response in a concentrated suspension of spherical particles. J. Rheol. 46, 321334.Google Scholar
Krishnan, G. P., Beimfohr, S. & Leighton, D. T. 1996 Shear-induced radial segregation in bidisperse suspensions. J. Fluid Mech. 321, 371393.CrossRefGoogle Scholar
Lecampion, B. & Garagash, D. I. 2014 Confined flow of suspensions modelled by a frictional rheology. J. Fluid Mech. 759, 197235.Google Scholar
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.Google Scholar
Lhuillier, D. 2009 Migration of rigid particles in non-Brownian viscous suspensions. Phys. Fluids 21, 023302.CrossRefGoogle Scholar
Lyon, M. K. & Leal, L. G. 1998 An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363, 2556.Google Scholar
Metzger, B., Pham, P. & Butler, J. E. 2013 Irreversibility and chaos: Role of lubrication interactions in sheared suspensions. Phys. Rev. E 87, 052304.CrossRefGoogle ScholarPubMed
Miller, R. & Morris, J. 2006 Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newtonian Fluid Mech. 135, 149165.CrossRefGoogle Scholar
Mills, P. & Snabre, P. 1995 Rheology and structure of concentrated suspensions of hard spheres. Shear induced particle migration. J. Phys. II 5, 15971608.Google Scholar
Morris, J. F. 2001 Anomalous migration in simulated oscillatory pressure-driven flow of a concentrated suspension. Phys. Fluids 13, 24572562.Google Scholar
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.CrossRefGoogle Scholar
Norman, J. T., Nayak, H. V. & Bonnecaze, R. T. 2005 Migration of buoyant particles in low-Reynolds-number pressure-driven flows. J. Fluid Mech. 523, 135.CrossRefGoogle Scholar
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.CrossRefGoogle Scholar
Nott, P. R., Guazzelli, E. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluids 23 (4), 043304.Google Scholar
Okagawa, A. & Mason, S. 1973 Suspensions: fluids with fading memories. Science 181, 159161.Google Scholar
Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L. & Abbott, J. R. 1992 A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4, 3040.CrossRefGoogle Scholar
Pine, D., Gollub, J., Brady, J. & Leshansky, A. 2005 Chaos and threshold for irreversibility in sheared suspensions. Nature 438 (7070), 9971000.Google Scholar
Richardson, J. F. & Zaki, W. N. 1954 Sedimentation and fluidization. Part I. Trans. Inst. Chem. Engrs 32, 3553.Google Scholar
Shauly, A., Averbakh, A., Nir, A. & Semiat, R. 1997 Slow viscous flows of highly concentrated suspensions. 2. Particle migration, velocity and concentration profiles in rectangular ducts. Intl J. Multiphase Flow 23, 613629.Google Scholar
Stickel, J. J., Phillips, R. J. & Powell, R. L. 2006 A constitutive model for microstructure and total stress in particulate suspensions. J. Rheol. 50, 379413.Google Scholar
Stickel, J. J., Phillips, R. J. & Powell, R. L. 2007 Application of a constitutive model for particulate suspensions: Time-dependent viscometric flows. J. Rheol. 51, 12711302.Google Scholar
Yapici, K., Powell, R. L. & Phillips, R. J. 2009 Particle migration and suspension structure in steady and oscillatory plane Poiseuille flow. Phys. Fluids 21, 053302.Google Scholar
Yeo, K. & Maxey, M. R. 2011 Numerical simulations of concentrated suspensions of mono disperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.Google Scholar

Snook et al. supplementary movie

Movie of the experimental images at a bulk volume fraction of 20%. All sequential images are shown for a given oscillation. Oscillations 1, 6, 11, 16, 21, 26, and 31 are shown.

Download Snook et al. supplementary movie(Video)
Video 7.2 MB

Snook et al. supplementary movie

Movie of the experimental images at a bulk volume fraction of 20%. All sequential images are shown for a given oscillation. Oscillations 1, 6, 11, 16, 21, 26, and 31 are shown.

Download Snook et al. supplementary movie(Video)
Video 5 MB
Supplementary material: File

Snook et al. supplementary data

Data sets

Download Snook et al. supplementary data(File)
File 60.5 KB

Snook et al. supplementary movie

Movie of the experimental images at a bulk volume fraction of 10%. The first image of oscillations 1 to 50 are shown sequentially to show the reversibility of the particles.

Download Snook et al. supplementary movie(Video)
Video 782.4 KB

Snook et al. supplementary movie

Movie of the experimental images at a bulk volume fraction of 10%. The first image of oscillations 1 to 50 are shown sequentially to show the reversibility of the particles.

Download Snook et al. supplementary movie(Video)
Video 1.4 MB

Snook et al. supplementary movie

Movie of the experimental images at a bulk volume fraction of 20%. The first image

Download Snook et al. supplementary movie(Video)
Video 1.2 MB

Snook et al. supplementary movie

Movie of the experimental images at a bulk volume fraction of 20%. The first image

Download Snook et al. supplementary movie(Video)
Video 934.8 KB