Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T18:42:08.432Z Has data issue: false hasContentIssue false

Dynamics of pulsatile flow through model abdominal aortic aneurysms

Published online by Cambridge University Press:  07 October 2014

Shyam Sunder Gopalakrishnan*
Affiliation:
Laboratoire de mécanique des fluides et d’acoustique, CNRS – École centrale de Lyon – Université Claude-Bernard Lyon 1 – INSA Lyon, 36 avenue Guy-de-Collongue, F-69134 Écully, France
Benoît Pier
Affiliation:
Laboratoire de mécanique des fluides et d’acoustique, CNRS – École centrale de Lyon – Université Claude-Bernard Lyon 1 – INSA Lyon, 36 avenue Guy-de-Collongue, F-69134 Écully, France
Arie Biesheuvel
Affiliation:
Laboratoire de mécanique des fluides et d’acoustique, CNRS – École centrale de Lyon – Université Claude-Bernard Lyon 1 – INSA Lyon, 36 avenue Guy-de-Collongue, F-69134 Écully, France
*
Email address for correspondence: [email protected]

Abstract

To contribute to the understanding of flow phenomena in abdominal aortic aneurysms, numerical computations of pulsatile flows through aneurysm models and a stability analysis of these flows were carried out. The volume flow rate waveforms into the aneurysms were based on measurements of these waveforms, under rest and exercise conditions, of patients suffering abdominal aortic aneurysms. The Reynolds number and Womersley number, the dimensionless quantities that characterize the flow, were varied within the physiologically relevant range, and the two geometric quantities that characterize the model aneurysm were varied to assess the influence of the length and maximal diameter of an aneurysm on the details of the flow. The computed flow phenomena and the induced wall shear stress distributions agree well with what was found in PIV measurements by Salsac et al. (J. Fluid Mech., vol. 560, 2006, pp. 19–51). The results suggest that long aneurysms are less pathological than short ones, and that patients with an abdominal aortic aneurysm are better to avoid physical exercise. The pulsatile flows were found to be unstable to three-dimensional disturbances if the aneurysm was sufficiently localized or had a sufficiently large maximal diameter, even for flow conditions during rest. The abdominal aortic aneurysm can be viewed as acting like a ‘wavemaker’ that induces disturbed flow conditions in healthy segments of the arterial system far downstream of the aneurysm; this may be related to the fact that one-fifth of the larger abdominal aortic aneurysms are found to extend into the common iliac arteries. Finally, we report a remarkable sensitivity of the wall shear stress distribution and the growth rate of three-dimensional disturbances to small details of the aneurysm geometry near the proximal end. These findings suggest that a sensitivity analysis is appropriate when a patient-specific computational study is carried out to obtain a quantitative description of the wall shear stress distribution.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armon, M. P., Wenham, P. W., Whitaker, S. C., Gregson, R. H. S. & Hopkinson, B. R. 1998 Common iliac artery aneurysms in patients with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 15, 255257.CrossRefGoogle ScholarPubMed
Barakat, A. I. 2013 Blood flow and arterial endothelial dysfunction: mechanisms and implications. C. R. Phys. 14, 479496.CrossRefGoogle Scholar
Deplano, V., Knapp, Y., Bertrand, E. & Gaillard, E. 2007 Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J. Biomech. 40, 24062413.CrossRefGoogle Scholar
Egelhoff, C. J., Budwig, R. S., Elger, D. F., Khraishi, T. A. & Johansen, K. H. 1999 Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. Biorheology 32, 13191329.Google Scholar
Finol, E. A., Keyhani, K. & Amon, C. H. 2002 The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions. Trans. ASME J. Biomech. Engng 125, 207217.CrossRefGoogle Scholar
Gopalakrishnan, S. S.2014 Dynamics and stability of flow through an abdominal aortic aneurysm. PhD thesis, Université de Lyon.CrossRefGoogle Scholar
Gopalakrishnan, S. S., Pier, B. & Biesheuvel, A. 2014 Global stability analysis of flow through a fusiform aneurysm: steady flows. J. Fluid Mech. 752, 90106.CrossRefGoogle Scholar
Griffith, M. D.2007 Stabilité et dynamique des écoulements en géométrie de sténose. PhD thesis, Université de Provence, Aix-Marseille and Monash University, Melbourne.Google Scholar
Griffith, M. D., Leweke, T., Thompson, M. C. & Hourigan, K. 2009 Pulsatile flow in stenotic geometries: flow behaviour and stability. J. Fluid Mech. 622, 291320.Google Scholar
Grootenboer, N., Bosch, J. L., Hendriks, J. M. & van Sambeek, M. R. H. M. 2009 Epidemiology, aetiology, risk of rupture and treatment of abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 38, 278284.CrossRefGoogle ScholarPubMed
Harter, L. P., Gross, B. H., Callen, P. W. & Barth, R. A. 1982 Ultrasonic evaluation of abdominal aortic thrombus. J. Ultrasound Med. 1, 315318.CrossRefGoogle ScholarPubMed
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Humphrey, J. D. & Holzapfel, G. A. 2012 Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J. Biomech. 45, 805814.CrossRefGoogle ScholarPubMed
Humphrey, J. D. & Taylor, C. A. 2008 Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu. Rev. Biomed. Engng 10, 221246.CrossRefGoogle ScholarPubMed
Johnston, K. W., Rutherford, R. B., Tilson, M. D., Shah, D. M., Hollier, L. & Stanley, J. C. 1991 Suggested standards for reporting on arterial aneurysms. J. Vascu. Surg. 13, 452458.Google Scholar
Ku, D. N. 1997 Blood flow in arteries. Annu. Rev. Fluid Mech. 29, 399434.CrossRefGoogle Scholar
Lasheras, J. C. 2007 The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293319.Google Scholar
Les, A. S., Shadden, S. C., Figueroa, C. A., Park, J. M., Tedesco, M. M., Herfkens, R. J., Dalman, R. L. & Taylor, C. A. 2010 Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Engng 38, 12881313.Google Scholar
Pedley, T. J. 1979 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.Google Scholar
Reininger, A. J., Heinzmann, U., Reininger, C. B., Friedrich, P. & Wurzinger, L. J. 1994 Flow-mediated fibrin thrombus formation in an endothelium-lined model of arterial branching. Thrombosis Res. 74 (6), 629641.CrossRefGoogle Scholar
Robichaux, J., Balachandar, S. & Vanka, S. P. 1999 Three-dimensional Floquet instability of the wake of a square cylinder. Phys. Fluids 11, 560578.Google Scholar
Salsac, A. V.2005 Évolution des contraintes hémodynamiques lors de la croissance des anévrismes aortiques abdominaux. PhD thesis, École Polytechnique.Google Scholar
Salsac, A. V., Sparks, S. R., Chomaz, J. M. & Lasheras, J. C. 2006 Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms. J. Fluid Mech. 560, 1951.Google Scholar
Salsac, A. V., Sparks, S. R. & Lasheras, J. C. 2004 Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms. Ann. Vascu. Surg. 18, 1421.Google Scholar
Sheard, G. J. 2009 Flow dynamics and wall shear stress variation in a fusiform aneurysm. J. Engng Maths 64, 379390.Google Scholar
Sheard, G. J. & Ryan, K. 2008 Wall shear stress and flow stability in a model fusiform aneurysm. ANZIAM J. 50, C1C15.Google Scholar
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2005 Subharmonic mechanism of the mode C instability. Phys. Fluids 17, 111702.CrossRefGoogle Scholar
Sheidaei, A., Hunley, S. C., Zeinali-Davarani, S., Raguin, L. G. & Baek, S. 2011 Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med. Engng Phys. 33, 8088.Google Scholar
Sherwin, S. J. & Blackburn, H. M. 2005 Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J. Fluid Mech. 533, 297327.CrossRefGoogle Scholar
Stamatopoulos, C., Mathioulakis, D. S., Papaharilaou, Y. & Katsamouris, A. 2011 Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model. Exp. Fluids 50, 16951709.Google Scholar
Suh, G. Y., Les, A. S., Tenforde, A. S., Shadden, S. C., Spilker, R. L., Yeung, J. J., Cheng, C. P., Herfkens, R. J., Dalman, R. L. & Taylor, C. A. 2011 Hemodynamic changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann. Biomed. Engng 39, 21862202.Google Scholar
Taylor, C. A. & Draney, M. T. 2004 Experimental and computational methods in cardiovascular fluid mechanics. Annu. Rev. Fluid Mech. 36, 197231.Google Scholar
Taylor, C. A. & Figueroa, C. A. 2009 Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Engng 11, 109134.CrossRefGoogle ScholarPubMed
Taylor, C. A., Hughes, T. J. R. & Zarins, C. K. 1999 Effect of exercise on hemodynamic conditions in the abdominal aorta. J. Vascu. Surg. 29, 10771089.Google Scholar
Taylor, C. A. & Yamaguchi, T. 1994 Three-dimensional simulation of blood flow in an abdominal aortic aneurysm – steady and unsteady flow cases. Trans. ASME J. Biomech. Engng 116, 8997.Google Scholar
Vorp, D. A. 2007 Biomechanics of abdominal aortic aneurysm. J. Biomech. 40, 18871902.Google Scholar
Vorp, D. A., Lee, P. C., Wang, D. H. J., Makaroun, M. S., Nemoto, E. M., Ogawa, S. & Webster, M. W. 2001 Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vascu. Surg. 34, 291299.Google Scholar
Yip, T. H. & Yu, S. C. M. 2001 Cyclic transition to turbulence in rigid abdominal aortic aneurysm models. Fluid Dyn. Res. 29, 81113.Google Scholar
Yip, T. H. & Yu, S. C. M. 2002 Oscillatory flows in straight tubes with an axisymmetric bulge. Exp. Therm. Fluid Sci. 26, 947961.CrossRefGoogle Scholar