Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T04:11:37.814Z Has data issue: false hasContentIssue false

Dynamics of particle settling and resuspension in viscous liquid films

Published online by Cambridge University Press:  01 February 2013

N. Murisic
Affiliation:
Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA
B. Pausader
Affiliation:
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
D. Peschka
Affiliation:
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
A. L. Bertozzi
Affiliation:
Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095, USA

Abstract

We develop a dynamic model for suspensions of negatively buoyant particles on an incline. Our model includes settling due to gravity and resuspension of particles by shear-induced migration. We consider the case where the particles settle onto the solid substrate and two distinct fronts form: a faster liquid and a slower particle front. The resulting transport equations for the liquid and the particles are of hyperbolic type and we study the dilute limit for which we compute exact solutions. We also carry out systematic laboratory experiments, focusing on the motion of the two fronts. We show that the dynamic model predictions for small to moderate values of the particle volume fraction and the inclination angle of the solid substrate agree well with the experimental data.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., Batchelor, G. K., Hinch, E. J., Koch, D. L. & Mauri, R. 1992 Longitudinal shear-induced diffusion of spheres in a dilute suspension. J. Fluid Mech. 240, 651.CrossRefGoogle Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute suspension of spheres. J. Fluid Mech. 52, 245.Google Scholar
Brady, J. F. & Morris, J. F. 1997 Microstructure of strongly sheared suspensions and its impact on rheology and diffusion. J. Fluid Mech. 348, 103.Google Scholar
Cook, B. P. 2008 Theory for particle settling and shear-induced migration in thin-film liquid flow. Phys. Rev. E 78, 045303.CrossRefGoogle Scholar
Cook, B. P., Bertozzi, A. L. & Hosoi, A. E. 2007 Shock solutions for particle-laden thin films. SIAM J. Appl. Maths 68, 760.CrossRefGoogle Scholar
Currie, C. C. & Smith, B. F. 1950 Flow characteristics of organopolysiloxan fluids and greases. Ind. Engng Chem. 42, 2457.Google Scholar
Davis, R. H. & Acrivos, A. 1985 Sedimentation of non-colloidal particles at low Reynolds-numbers. Annu. Rev. Fluid Mech. 17, 91.CrossRefGoogle Scholar
Eilers, V. H. 1941 Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid 97, 313.Google Scholar
Einstein, A. 1906 Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 19, 289.CrossRefGoogle Scholar
Einstein, A. 1911 Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 34, 591.Google Scholar
Ferrini, F., Ercolani, D., de Cindio, B., Nicodemo, L., Nicolais, L. & Renaudo, S. 1979 Shear viscosity of settling suspensions. Rheol. Acta 18, 289.Google Scholar
Grunewald, N., Levy, R., Mata, M., Ward, T. & Bertozzi, A. L. 2010 Self-similarity in particle-laden flows at constant volume. J. Engng Maths 66 (1), 53.Google Scholar
Huppert, H. 1982 Flow and instability of a viscous current down a slope. Nature 300, 427.CrossRefGoogle Scholar
Krieger, I. M. & Dougherty, T. J. 1959 A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3, 137.CrossRefGoogle Scholar
Kynch, G. J. 1952 A theory of sedimentation. Trans. Faraday Soc. 48, 166.Google Scholar
Leighton, D. & Acrivos, A. 1987a Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J. Fluid Mech. 177, 109.CrossRefGoogle Scholar
Leighton, D. & Acrivos, A. 1987b The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415.Google Scholar
Maron, S. H. & Pierce, P. E. 1956 Application of Ree–Eyering generalized flow theory to suspensions of spherical particles. J. Colloid Sci. 11, 80.CrossRefGoogle Scholar
Mata, M. R. & Bertozzi, A. L. 2011 A numerical scheme for particle-laden thin film flow in two dimensions. J. Comput. Phys. 230, 6334.Google Scholar
McGeary, R. K. 1961 Mechanical packing of spherical particles. J. Am. Ceram. Soc. 44, 513.Google Scholar
Merhi, D., Lemaire, E., Bossis, G. & Moukalled, F. 2005 Particle migration in a concentrated suspension flowing between rotating parallel plates: investigation of diffusion flux coefficients. J. Rheol. 49, 1429.CrossRefGoogle Scholar
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 1213.CrossRefGoogle Scholar
Morris, J. F. & Brady, J. F. 1998 Pressure-driven flow of a suspension: buoyancy effects. Intl J. Multiphase Flow 24, 105.Google Scholar
Murisic, N., Ho, J., Hu, V., Latterman, P., Koch, T., Lin, K., Mata, M. & Bertozzi, A. L. 2011 Particle-laden viscous thin-film flows on an incline: experiments compared with a theory based on shear-induced migration and particle settling. Physica D: Nonlinear Phenomena 240, 1661.Google Scholar
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions – simulation and theory. J. Fluid Mech. 275, 157.Google Scholar
Onoda, G. Y. & Liniger, E. G. 1990 Random loose packings of uniform spheres and the dilatancy onset. Phys. Rev. Lett. 64, 2727.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931.Google Scholar
Phillips, R. J., Armstrong, R. C., Brown, R. A., Graham, A. L. & Abbott, J. R. 1992 A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4, 30.Google Scholar
Richardson, J. F. & Zaki, W. N. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3, 65.Google Scholar
Schaflinger, U., Acrivos, A. & Zhang, K. 1990 Viscous resuspension of a sediment within a laminar and stratified flow. Intl J. Multiphase Flow 16, 567.Google Scholar
Stickel, J. J. & Powell, R. L. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129.Google Scholar
Timberlake, B. D. & Morris, J. F. 2005 Particle migration and free-surface topography in inclined plane flow of a suspension. J. Fluid Mech. 538, 309.Google Scholar
Torquato, S., Truskett, T. M. & DeBenedetti, P. G. 2000 Is random close packing of spheres well defined? Phys. Rev. Lett. 84, 2064.Google Scholar
Ward, T., Wey, C., Glidden, R., Hosoi, A. E. & Bertozzi, A. L. 2009 Experimental study of gravitation effects in the flow of a particle-laden thin film on an inclined plane. Phys. Fluids 21, 083305.Google Scholar
Zhang, K. & Acrivos, A. 1994 Viscous resuspension in fully developed laminar pipe flows. Intl J. Multiphase Flow 20, 579.Google Scholar
Zhou, J. J., Dupuy, B., Bertozzi, A. L. & Hosoi, A. E. 2005 Theory for shock dynamics in particle-laden thin films. Phys. Rev. Lett. 94, 117803.Google Scholar