Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-24T11:19:24.284Z Has data issue: false hasContentIssue false

Dynamic large-eddy simulation of hypersonic transition delay over broadband wall impedance

Published online by Cambridge University Press:  14 November 2024

Victor C.B. Sousa*
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
Viola Wartemann
Affiliation:
German Aerospace Center (DLR), Institute for Aerodynamics and Flow Technology, Braunschweig 38108, Germany
Alexander Wagner
Affiliation:
German Aerospace Center (DLR), Institute for Aerodynamics and Flow Technology, Göttingen 37073, Germany
Carlo Scalo
Affiliation:
School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA School of Aeronautical and Astronautical Engineering, Purdue University, West Lafayette, IN 47907, USA
*
Email address for correspondence: [email protected]

Abstract

Three-dimensional numerical simulations of hypersonic boundary layer transition delay due to porosity representative of carbon-fibre-reinforced carbon-matrix ceramics (C/C) were carried out on a 7$^{\circ {}}$ half-angle cone for unit Reynolds numbers $Re_m=2.43 \times 10^6$$6.40\times 10^6\ \text {m}^{-1}$, at the free-stream Mach number $M_\infty =7.4$, for both sharp and 2.5 mm nose tip radii. A broadband time-domain impedance boundary condition was used to model the acoustic effects of the porous surface on the flow field. A quasi-spectral sub-filter-scale dynamic closure was adopted to stabilize the computations upon turbulent breakdown under extreme cooling conditions, with wall-to-adiabatic temperature ratio of $T_{w}/ T_{ad} \simeq 0.08 $, while accurately recovering the growth rates of the unstable modes present in the early transition stages. Good agreement is observed with the reference experimental data, both in terms of the predicted extent of the transition delay and the measured second-mode frequency spectrum. The latter is strongly modulated by the formation of near-wall low-temperature three-dimensional streaks. Pressure disturbances concentrate in corridors of locally thickened boundary layer, with frequencies lower than what predicted by linear theory. Here, trapped wavetrains are formed, which can persist long into the turbulent region. Finally, it is shown that the presence of a porous wall simply shifts the onset of turbulence downstream, without affecting its structure.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, N.A. & Kleiser, L. 1996 Subharmonic transition to turbulence in a flat-plate boundary layer at Mach number 4.5. J. Fluid Mech. 317, 301335.CrossRefGoogle Scholar
Alba, C., Casper, K., Beresh, S. & Schneider, S. 2010 Comparison of experimentally measured and computed second-mode disturbances in hypersonic boundary-layers. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 897. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Bestek, H., Thumm, A. & Fasel, H. 1993 Direct numerical simulation of the three-dimensional breakdown to turbulence in compressible boundary layers. In Thirteenth International Conference on Numerical Methods in Fluid Dynamics, pp. 145–149. Springer.CrossRefGoogle Scholar
Brès, G., Colonius, T. & Fedorov, A. 2008 Stability of temporally evolving supersonic boundary layers over micro-cavities for ultrasonic absorptive coatings. In 5th AIAA Theoretical Fluid Mechanics Conference, p. 4337. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Brès, G.A., Inkman, M., Colonius, T. & Fedorov, A.V. 2013 Second-mode attenuation and cancellation by porous coatings in a high-speed boundary layer. J. Fluid Mech. 726, 312337.CrossRefGoogle Scholar
Browne, O.M.F., Al Hasnine, S.M.A. & Brehm, C. 2021 Numerical method for particulate-induced high-speed boundary-layer transition simulations. AIAA J. 59 (4), 11961213.CrossRefGoogle Scholar
Camillo, G.P., Wagner, A., Toki, T. & Scalo, C. 2023 Combined experimental and numerical investigation of a hypersonic turbulent boundary layer by means of FLDI and large-eddy simulations. Aerospace 10 (6), 570.CrossRefGoogle Scholar
Chang, C.-L. & Malik, M.R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.CrossRefGoogle Scholar
Chen, Y. & Scalo, C. 2021 Trapped waves in supersonic and hypersonic turbulent channel flow over porous walls. J. Fluid Mech. 920, A24.CrossRefGoogle Scholar
Chokani, N., Bountin, D.A., Shiplyuk, A.N. & Maslov, A.A. 2005 Nonlinear aspects of hypersonic boundary-layer stability on a porous surface. AIAA J. 43 (1), 149155.CrossRefGoogle Scholar
Chynoweth, B.C., Ward, C.A.C., Henderson, R.O., Moraru, C.G., Greenwood, R.T., Abney, A.D. & Schneider, S.P. 2014 Transition and instability measurements in a Mach 6 hypersonic quiet wind tunnel. AIAA Paper 75.CrossRefGoogle Scholar
De Tullio, N. & Sandham, N.D. 2010 Direct numerical simulation of breakdown to turbulence in a Mach 6 boundary layer over a porous surface. Phys. Fluids 22 (9), 094105.CrossRefGoogle Scholar
Demetriades, A. 1974 Hypersonic viscous flow over a slender cone, part III: laminar instability and transition. In 7th Fluid and Plasma Dynamics Conference. AIAA-1974-535. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Dittert, C. & Kütemeyer, M. 2017 Octra-optimized ceramic for hypersonic application with transpiration cooling. In Advances in High Temperature Ceramic Matrix Composites and Materials for Sustainable Development; Ceramic Transactions, Volume 263, pp. 389399.Google Scholar
Douasbin, Q., Scalo, C., Selle, L. & Poinsot, T. 2018 Delayed-time domain impedance boundary conditions (D-TDIBC). J. Comput. Phys. 371, 5066.CrossRefGoogle Scholar
van Driest, E.R. 1951 Turbulent boundary layer in compressible fluids. J. Aerosp. Sci. 18, 145160, 216.Google Scholar
Duan, L., Beekman, I. & Martin, M.P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martin, M.P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Egorov, I.V., Fedorov, A.V. & Soudakov, V.G. 2008 Receptivity of a hypersonic boundary layer over a flat plate with a porous coating. J. Fluid Mech. 601, 165187.CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Fedorov, A. & Malmuth, N. 2008 Parametric studies of hypersonic laminar flow control using a porous coating of regular microstructure. In 46th AIAA Aerospace Sciences Meeting and Exhibit, p. 588. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Fedorov, A.V. 2003 Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491, 101129.CrossRefGoogle Scholar
Fedorov, A.V., Kozlov, V.F., Shiplyuk, A.N., Maslov, A.A. & Malmuth, N.D. 2006 Stability of hypersonic boundary layer on porous wall with regular microstructure. AIAA J. 44 (8), 18661871.CrossRefGoogle Scholar
Fedorov, A.V., Malmuth, N.D., Rasheed, A. & Hornung, H.G. 2001 Stabilization of hypersonic boundary layers by porous coatings. AIAA J. 39 (4), 605610.CrossRefGoogle Scholar
Fedorov, A.V., Shiplyuk, A., Maslov, A., Burov, E. & Malmuth, N. 2003 Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating. J. Fluid Mech. 479, 99124.CrossRefGoogle Scholar
Franko, K.J. & Lele, S.K. 2013 Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers. J. Fluid Mech. 730, 491532.CrossRefGoogle Scholar
Fung, K.Y. & Ju, H. 2001 Broadband time-domain impedance models. AIAA J. 39 (8), 14491454.CrossRefGoogle Scholar
Fung, K.-Y. & Ju, H. 2004 Time-domain impedance boundary conditions for computational acoustics and aeroacoustics. Intl J. Comput. Fluid D 18 (6), 503511.CrossRefGoogle Scholar
Gray, K.A. & Schneider, S.P. 2020 Measurements of second-mode dominated transition on a straight cone in the Boeing/AFOSR Mach-6 quiet tunnel. In AIAA Scitech 2020 Forum, p. 0590. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Gustavsen, B. & Semlyen, A. 1999 Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv. 14 (3), 10521061.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2018 Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances. J. Fluid Mech. 847, R3.CrossRefGoogle Scholar
Hader, C. & Fasel, H.F. 2019 Direct numerical simulations of hypersonic boundary-layer transition for a flared cone: fundamental breakdown. J. Fluid Mech. 869, 341384.CrossRefGoogle Scholar
Hader, C., Leinemann, M. & Fasel, H.F. 2020 Direct numerical simulations of hypersonic boundary-layer transition for a slender cone. In AIAA Aviation 2020 Forum, p. 2993. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Hannemann, K., Martinez Schramm, J., Wagner, A. & Ponchio Camillo, G. 2018 The high enthalpy shock tunnel göttingen of the german aerospace center (DLR). J. Large-Scale Res. Facilities JLSRF 4 (A133), 114.CrossRefGoogle Scholar
Hein, S., Bertolotti, F.P., Simen, M., Hanifi, A. & Henningson, D. 1994 Linear nonlocal instability analysis-the linear NOLOT code. Tech. Rep. DLR-IB 223–94. Deutsche Forschunganstalt für Luft-und Raumfahrt.Google Scholar
Huang, P.G., Coleman, G.N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Illingworth, C.R. 1949 Steady flow in the laminar boundary layer of a gas. In Proceedings of the Royal Society A, vol. 199, pp. 533–558. The Royal Society.CrossRefGoogle Scholar
Johnson, H. & Candler, G. 2005 Hypersonic boundary layer stability analysis using PSE-Chem. In 35th AIAA Fluid Dynamics Conference and Exhibit, p. 5023. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Jordan, S.A. 1999 A large-eddy simulation methodology in generalized curvilinear coordinates. J. Comput. Phys. 148 (2), 322340.CrossRefGoogle Scholar
Kendall, J.M. 1975 Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13 (3), 290299.CrossRefGoogle Scholar
Kinsler, L.E., Frey, A.R., Coppens, A.B. & Sanders, J.V. 1999 Fundamentals of Acoustics, 4th edn (ed. L.E. Kinsler, A.R. Frey, A.B. Coppens & J.V. Sanders), p. 560. Wiley-VCH.Google Scholar
Kroll, N. & Fassbender, J.K. 2006 MEGAFLOW-Numerical Flow Simulation for Aircraft Design: Results of the Second Phase of the German CFD Initiative MEGAFLOW, Presented during its Closing Symposium at DLR, Braunschweig, Germany, December 10 and 11, 2002, vol. 89. Springer Science & Business Media.Google Scholar
Lees, L. 1956 Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds. J. Jet Propul. 26 (4), 259269.CrossRefGoogle Scholar
Lele, S.K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lin, J., Scalo, C. & Hesselink, L. 2016 High-fidelity simulation of a standing-wave thermoacoustic–piezoelectric engine. J. Fluid Mech. 808, 1960.CrossRefGoogle Scholar
Lin, J., Scalo, C. & Hesselink, L. 2017 High-fidelity simulation of an ultrasonic standing-wave thermoacoustic engine with bulk viscosity effects. In 55th AIAA Aerospace Sciences Meeting. AIAA 2017–0929. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Lukashevich, S.V., Maslov, A.A., Shiplyuk, A.N., Fedorov, A.V. & Soudakov, V.G. 2012 Stabilization of high-speed boundary layer using porous coatings of various thicknesses. AIAA J. 50 (9), 18971904.CrossRefGoogle Scholar
Lukashevich, S.V., Morozov, S.O. & Shiplyuk, A.N. 2016 Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2. Effect of the porous coating location. J. Appl. Mech. Tech. Phys. 57 (5), 873878.CrossRefGoogle Scholar
Mack, L.M. 1969 Boundary-layer stability theory. Document 900-277, Rev. A. Jet Propulsion Laboratary, Pasadena, CA.Google Scholar
Mack, L.M. 1984 Boundary-layer linear stability theory. Tech. Rep. DTIC Document.Google Scholar
Mack, L.M. 1990 On the inviscid acoustic-mode instability of supersonic shear flows. Theor. Comput. Fluid Dyn. 2 (2), 97123.CrossRefGoogle Scholar
Malmuth, N., Fedorov, A., Shalaev, V., Cole, J., Hites, M., Williams, D. & Khokhlov, A. 1998 Problems in high speed flow prediction relevant to control. In 2nd AIAA, Theoretical Fluid Mechanics Meeting, AIAA-1998-2695, p. 2695. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Mangler, W. 1948 Zusammenhang zwischen ebenen und rotationssymmetrischen grenzschichten in kompressiblen flüssigkeiten. Z. Angew. Math. Mech. 28 (4), 97103.CrossRefGoogle Scholar
Morkovin, M.V. 1962 Effects of compressibility on turbulent flows. Méc. Turb. 367, 380.Google Scholar
Morkovin, M.V. 1969 Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. Tech. Rep. DTIC Document.Google Scholar
Morkovin, M.V., Reshotko, E. & Herbert, T. 1994 Transition in open flow systems-a reassessment. Bull. Am. Phys. Soc. 39 (9), 1882.Google Scholar
Morozov, S.O., Lukashevich, S.V., Soudakov, V.G. & Shiplyuk, A.N. 2018 Experimental study of the influence of small angles of attack and cone nose bluntness on the stabilization of hypersonic boundary layer with passive porous coating. Thermophys. Aeromech. 25 (6), 793800.CrossRefGoogle Scholar
Nagarajan, S., Lele, S.K. & Ferziger, J.H. 2003 A robust high-order compact method for large-eddy simulation. J. Comput. Phys. 191 (2), 392419.CrossRefGoogle Scholar
Nagarajan, S., Lele, S.K. & Ferziger, J.H. 2007 Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471504.CrossRefGoogle Scholar
NT Force 1992 Report of the defense science board task force on the national aerospace plane (NASP). Tech. Rep. Defense Science Board, Office of the Secretary of Defense.CrossRefGoogle Scholar
Pruett, C.D. & Chang, C.-L. 1995 Spatial direct numerical simulation of high-speed boundary-layer flows Part II: transition on a cone in Mach 8 flow. Theor. Comput. Fluid Dyn. 7 (5), 397424.CrossRefGoogle Scholar
Rasheed, A., Hornung, H.G., Fedorov, A.V. & Malmuth, N.D. 2002 Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA J. 40 (3), 481489.CrossRefGoogle Scholar
Reed, H.L., Kimmel, R., Schneider, S., Arnal, D. & Saric, W. 1997 Drag prediction and transition in hypersonic flow. In AGARD Conference Proceedings, vol. 3, p. C15. AGARD.CrossRefGoogle Scholar
Rienstra, S. 2006 Impedance models in time domain, including the extended Helmholtz resonator modeli. In 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), p. 2686. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Running, C.L., Bemis, B.L., Hill, J.L., Borg, M.P., Redmond, J.J., Jantze, K. & Scalo, C. 2023 Attenuation of hypersonic second-mode boundary-layer instability with an ultrasonically absorptive silicon-carbide foam. Exp. Fluids 64 (4), 79.CrossRefGoogle Scholar
Scalo, C., Bodart, J. & Lele, S.K. 2015 Compressible turbulent channel flow with impedance boundary conditions. Phys. Fluids 27, 035107.CrossRefGoogle Scholar
Schneider, S.P. 2004 Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies. Prog. Aerosp. Sci. 40 (1–2), 150.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H.F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H.F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.CrossRefGoogle Scholar
Softley, E. 1969 Boundary layer transition on hypersonic blunt, slender cones. In 2nd Fluid and Plasma Dynamics Conference, p. 705. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Sousa, V., Wartemann, V., Wagner, A. & Scalo, C. 2022 Dynamic QSV-LES of hypersonic boundary layer transition delay via porous walls over a blunt cone. In 11th International Conference on Computational Fluid Dynamics.Google Scholar
Sousa, V.C.B., Patel, D., Chapelier, J.-B., Wartemann, V., Wagner, A. & Scalo, C. 2019 Numerical investigation of second-mode attenuation over carbon/carbon porous surfaces. J. Spacecr. Rockets 56 (2), 319332.CrossRefGoogle Scholar
Sousa, V.C.B. & Scalo, C. 2022 a A unified quasi-spectral viscosity (QSV) approach to shock capturing and large-eddy simulation. J. Comput. Phys. 459, 111139.CrossRefGoogle Scholar
Sousa, V.C.B. & Scalo, C. 2022 b Corrigendum to ‘A unified quasi-spectral viscosity (QSV) approach to shock capturing and large-eddy simulation’ [J. Comput. Phys. 455 (2022) 111139]. J. Comput. Phys. 471, 111606.CrossRefGoogle Scholar
Sousa, V.C.B., Wartemann, V., Wagner, A. & Scalo, C. 2023 Linear stability analysis of second-modal instability attenuation via porous carbon-matrix ceramics. Phys. Fluids 35 (6), 064113.CrossRefGoogle Scholar
Stetson, K. & Kimmel, R. 1993 On the breakdown of a hypersonic laminar boundary layer. In 31st Aerospace Sciences Meeting, p. 896. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Taylor, G.I. & Maccoll, J.W. 1933 The air pressure on a cone moving at high speeds.—I. Proc. R. Soc. Lond. A 139 (838), 278297.Google Scholar
Thirani, S., Gupta, P. & Scalo, C. 2020 Knudsen number effects on the nonlinear acoustic spectral energy cascade. Phys. Rev. E 101 (2), 023101.CrossRefGoogle ScholarPubMed
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28, 026102.CrossRefGoogle Scholar
Tritarelli, R.C., Lele, S.K. & Fedorov, A. 2015 Stabilization of a hypersonic boundary layer using a felt-metal porous coating. J. Fluid Mech. 769, 729739.CrossRefGoogle Scholar
Turner, J., Hoerschgen, M., Jung, W., Stamminger, A. & Turner, P. 2006 SHEFEX - hypersonic re-entry flight experiment vehicle and subsystem design, flight performance and prospects. In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. AIAA-2006-8115, p. 8115. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1995 A priori tests of large-eddy simulation of the compressible plane mixing layer. J. Engng Maths 29 (4), 299327.CrossRefGoogle Scholar
Wagner, A. 2014 Passive hypersonic boundary layer transition control using ultrasonically absorptive carbon-carbon ceramic with random microstructure. PhD thesis, Katholieke Universiteit, Leuven.CrossRefGoogle Scholar
Wagner, A., Kuhn, M., Schramm, J.M. & Hannemann, K. 2013 Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon–carbon material with random microstructure. Exp. Fluids 54 (10), 1606.CrossRefGoogle Scholar
Wagner, A., Schramm, J.M., Dittert, C., Sousa, V., Patel, D. & Carlo, S. 2018 a Experimental and Numerical Acoustic Characterization of Ultrasonically Absorptive Porous Materials. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Wagner, A., Schülein, E., Petervari, R., Hannemann, K., Ali, S.R.C., Cerminara, A. & Sandham, N.D. 2018 b Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation. J. Fluid Mech. 842, 495531.CrossRefGoogle Scholar
Wagner, A., Wartemann, V., Dittert, C. & Kütemeyer, M. 2019 Passive hypersonic transition control by means of ultrasonically absorptive thermal protection materials (UAT). Tech. Rep. AFRL-AFOSR-UK-TR-2025-0025. DTIC.Google Scholar
Wang, X. & Zhong, X. 2010 The impact of porous surface on hypersonic boundary layer instability. In 40th Fluid Dynamics Conference and Exhibit. AIAA-2010-5021. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Wang, X. & Zhong, X. 2011 Phase angle of porous coating admittance and its effect on boundary-layer stabilization. In 41st AIAA Fluid Dynamics Conference and Exhibit, p. 3080. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Wartemann, V., Lüdeke, H. & Sandham, N.D. 2012 Numerical investigation of hypersonic boundary-layer stabilization by porous surfaces. AIAA J. 50 (6), 12811290.CrossRefGoogle Scholar
Wartemann, V., Wagner, A., Giese, T., Eggers, T. & Hannemann, K. 2014 Boundary-layer stabilization by an ultrasonically absorptive material on a cone in hypersonic flow: numerical investigations. CEAS Space J. 6 (1), 1322.CrossRefGoogle Scholar
Wartemann, V., Wagner, A., Kuhn, M., Eggers, T. & Hannemann, K. 2015 Passive hypersonic boundary layer transition control using an ultrasonically absorptive coating with random microstructure: computational analysis based on the ultrasonic absorption properties of carbon-carbon. Procedia IUTAM 14, 413422.CrossRefGoogle Scholar
Wartemann, V., Wagner, A., Wagnild, R., Pinna, F., Miró Miró, F., Tanno, H. & Johnson, H. 2019 High-enthalpy effects on hypersonic boundary-layer transition. J. Spacecr. Rockets 56 (2), 347356.CrossRefGoogle Scholar
Weihs, H., Longo, J. & Turner, J. 2008 The sharp edge flight experiment SHEFEX II, a mission overview and status. In 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, p. 2542. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
White, F.M. & Corfield, I. 2006 Viscous Fluid Flow, vol. 3. McGraw-Hill.Google Scholar
Zhang, C., Duan, L. & Choudhari, M.M. 2018 Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers. AIAA J. 56 (11), 42974311.CrossRefGoogle Scholar
Supplementary material: File

Sousa et al. supplementary movie

Instantaneous Q-criterion isosurfaces colored by temperature as well as a numerical Schlieren plane for a 2.5 mm blunt-nosed cone at Rem = 4.06 · 106 m-1 over impermeable and porous surfaces.
Download Sousa et al. supplementary movie(File)
File 2 MB