Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T18:48:39.638Z Has data issue: false hasContentIssue false

Dynamic interfacial tension effects in the rupture of liquid necks

Published online by Cambridge University Press:  06 January 2012

M. Robert de Saint Vincent
Affiliation:
Laboratoire Ondes et Matière d’Aquitaine (UMR 5798 CNRS), U. Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
J. Petit
Affiliation:
Laboratoire Ondes et Matière d’Aquitaine (UMR 5798 CNRS), U. Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
M. Aytouna
Affiliation:
Van Der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam, The Netherlands
J. P. Delville
Affiliation:
Laboratoire Ondes et Matière d’Aquitaine (UMR 5798 CNRS), U. Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
D. Bonn
Affiliation:
Van Der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, 1018XE Amsterdam, The Netherlands Laboratoire de Physique Statistique de l’ENS, 24 rue Lhomond, 75005 Paris, France
H. Kellay*
Affiliation:
Laboratoire Ondes et Matière d’Aquitaine (UMR 5798 CNRS), U. Bordeaux 1, 351 cours de la Libération, 33405 Talence, France
*
Email address for correspondence: [email protected]

Abstract

By examining the rupture of fluid necks during droplet formation of surfactant-laden liquids, we observe deviations from expected behaviour for the pinch-off of such necks. We suggest that these deviations are due to the presence of a dynamic (time-varying) interfacial tension at the minimum neck location and extract this quantity from our measurements on a variety of systems. The presence of such dynamic interfacial tension effects should change the rupture process drastically. However, our measurements show that a simple ansatz, which incorporates the temporal change of the interfacial tension, allows us to understand the dynamics of thinning. This shows that this dynamics is largely independent of the exact details of what happens far from the breakup location, pointing to the local nature of the thinning dynamics.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Amarouchene, Y., Bonn, D., Meunier, J. & Kellay, H. 2001 Inhibition of the finite-time singularity during droplet fission of a polymeric fluid. Phys. Rev. Lett. 86, 3558.CrossRefGoogle ScholarPubMed
2.Ambravaneswaran, B. & Basaran, O. A. 1999 Effects of insoluble surfactants on the nonlinear deformation and breakup of stretching liquid bridges. Phys. Fluids 11, 997.CrossRefGoogle Scholar
3.Aytouna, M., Bartolo, D., Wegdam, G., Bonn, D. & Rafaï, S. 2010 Impact dynamics of surfactant laden drops: dynamic surface tension effects. Exp. Fluids 48, 49.CrossRefGoogle Scholar
4.Binks, B. P., Cho, W. G., Fletcher, P. D. I. & Petsev, D. N. 2000 Stability of oil-in-water emulsions in a low interfacial tension system. Langmuir 16, 1025.CrossRefGoogle Scholar
5.Christov, N. C., Danov, K. D., Kralchevsky, P. A., Ananthapadmanabhan, K. P. & Lips, A. 2006 Maximum bubble pressure method: universal surface age and transport mechanisms in surfactant solutions. Langmuir 22, 7528.CrossRefGoogle ScholarPubMed
6.Cohen, I., Brenner, M. P., Eggers, J. & Nagel, S. R. 1999 Two fluid drop snap-off problem: experiments and theory. Phys. Rev. Lett. 83, 1147.CrossRefGoogle Scholar
7.Cohen, I. & Nagel, S. R. 2001 Testing for scaling behaviour dependence on geometrical and fluid parameters in the two fluid drop snap-off problem. Phys. Fluids 13, 3533.CrossRefGoogle Scholar
8.Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2002 Pinchoff and satellite formation in surfactant covered viscous threads. Phys. Fluids 14, 1364.CrossRefGoogle Scholar
9.Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2009 Breakup of surfactant-laden jets above the critical micelle concentration. J. Fluid Mech. 629, 195.CrossRefGoogle Scholar
10.Delville, J. P., Robert de Saint Vincent, M., Schroll, R. D., Chraïbi, H., Issenmann, B., Wunenburger, R., Lasseux, D., Zhang, W. W. & Brasselet, E. 2009 Laser microfluidics: fluid actuation by light. J. Opt. A: Pure Appl. Opt. 11, 034015.CrossRefGoogle Scholar
11.Doshi, P., Suryo, R., Yildirim, O. E., McKinley, G. H. & Basaran, O. A. 2003 Scaling in pinch-off of generalized Newtonian fluids. J. Non-Newtonian Fluid Mech. 113, 127.CrossRefGoogle Scholar
12.Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71, 3458.CrossRefGoogle ScholarPubMed
13.Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865.CrossRefGoogle Scholar
14.Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.CrossRefGoogle Scholar
15.Jin, F., Gupta, N. R. & Stebe, K. J. 2006 The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant. Phys. Fluids 18, 022103.CrossRefGoogle Scholar
16.Liao, Y. C., Franses, E. I. & Basaran, O. A. 2006 Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer. Phys. Fluids 18, 022101.CrossRefGoogle Scholar
17.Liao, Y. C., Subramani, H. J., Franses, E. I. & Basaran, O. A. 2004 Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges. Langmuir 20, 9926.CrossRefGoogle ScholarPubMed
18.Lister, J. R. & Stone, H. A. 1998 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10, 2758.CrossRefGoogle Scholar
19.McGough, P. T. & Basaran, O. A. 2006 Repeated formation of fluid threads in breakup of a surfactant-covered jet. Phys. Rev. Lett. 96, 054502.CrossRefGoogle ScholarPubMed
20.Mitani, S. & Sakai, K. 2002 Measurement of ultralow interfacial tension with a laser interface manipulation technique. Phys. Rev. E 66, 031604.CrossRefGoogle ScholarPubMed
21.Papageorgiou, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7, 1529.CrossRefGoogle Scholar
22.Renardy, M. & Renardy, Y. 2004 Similarity solutions for breakup of jets of power law fluids. J. Non-Newtonian Fluid Mech. 122, 303.CrossRefGoogle Scholar
23.Roché, M., Aytouna, M., Bonn, D. & Kellay, H. 2009 Effect of surface tension variations on the pinch-off behavior of small fluid drops in the presence of surfactants. Phys. Rev. Lett. 103, 264501.CrossRefGoogle ScholarPubMed
24.Rothert, A., Richter, R. & Rehberg, I. 2001 Transition from symmetric to asymmetric scaling function before drop pinch-off. Phys. Rev. Lett. 87, 084501.CrossRefGoogle ScholarPubMed
25.Savage, J. R., Caggioni, M., Spicer, P. T. & Cohen, I. 2010 Partial universality: pinch-off dynamics in fluids with smectic liquid crystalline order. Soft Matt. 6, 892.CrossRefGoogle Scholar
26.Timmermans, M. L. E. & Lister, J. R. 2002 The effect of surfactant on the stability of a liquid thread. J. Fluid Mech. 459, 289.CrossRefGoogle Scholar
27.Wagner, C., Amarouchene, Y., Bonn, D. & Eggers, J. 2005 Droplet detachment and satellite bead formation in viscoelastic fluids. Phys. Rev. Lett. 95, 164504.CrossRefGoogle ScholarPubMed
28.Xu, Q., Liao, Y. C. & Basaran, O. A. 2007 Can surfactant be present at pinch-off of a liquid filament? Phys. Rev. Lett. 98, 054503.CrossRefGoogle ScholarPubMed
29.Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for capillary pinch-off in fluids of differing viscosity. Phys. Rev. Lett. 83, 1151.CrossRefGoogle Scholar