Hostname: page-component-f554764f5-fnl2l Total loading time: 0 Render date: 2025-04-19T12:20:33.388Z Has data issue: false hasContentIssue false

Droplet velocity in both limits of low and high soluble surfactants in a Hele-Shaw cell: experimental and analytical results

Published online by Cambridge University Press:  16 April 2025

Jacques-Teiva Baué
Affiliation:
Univ Rennes, CNRS IPR - UMR 6251, F-35000, Rennes, France
Adrien Gans
Affiliation:
Univ Rennes, CNRS IPR - UMR 6251, F-35000, Rennes, France LEMTA, CNRS, Université de Lorraine, 2, Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, B.P. 160, 54504, France
Lucas Jannin
Affiliation:
Univ Rennes, CNRS IPR - UMR 6251, F-35000, Rennes, France
Benjamin Reichert
Affiliation:
Univ Rennes, CNRS IPR - UMR 6251, F-35000, Rennes, France Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520—IEMN—Institut d’Electronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
Isabelle Cantat*
Affiliation:
Univ Rennes, CNRS IPR - UMR 6251, F-35000, Rennes, France
Marie-Caroline Jullien
Affiliation:
Univ Rennes, CNRS IPR - UMR 6251, F-35000, Rennes, France
*
Corresponding author: Isabelle Cantat, [email protected]

Abstract

The transport of droplets in microfluidic channels is strongly dominated by interfacial properties, which makes it a relevant tool for understanding the mechanisms associated with the presence of more or less soluble surfactants. In this paper, we show that the mobility of an oil droplet pushed by an aqueous carrier phase in a Hele-Shaw cell qualitatively depends on the nature of the surfactants: the drop velocity is an increasing function of the drop radius for highly soluble surfactants, whereas it is a decreasing function for poorly soluble surfactants. These two different behaviours are experimentally observed by using two families of surfactant with a carbon chain of variable length. We first focus on the second regime, observed here for the first time, and we develop a model which takes into account the flux of surfactants on the whole droplet interface, assuming an incompressible surfactant monolayer. This model leads to a quantitative agreement with the experimental data, without any adjustable parameter. We then propose a model for a stress-free interface, i.e. for highly soluble surfactants. In these two limits, the models become independent on the physico-chemical properties of the surfactants, and should be valid for any surfactant complying with the incompressible or stress-free limit. As such, we provide a theoretical framework with two limits for all the experimental physico-chemical configurations, which constitute the bounds for the droplet mobility for intermediate surfactant solubility.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Afkhami, S. & Renardy, Y. 2013 A volume-of-fluid formulation for the study of co-flowing fluids governed by the Hele-Shaw equations. Phys. Fluids 25, 082001.CrossRefGoogle Scholar
Baué, J.-T. 2022 Rôle de la chimie des surfactants dans la dynamique de gouttes confinées dans une cavité microfluidique. Theses, Université de Rennes, France.Google Scholar
Boos, W. & Thess, A. 1997 Thermocapillary flow in a Hele-Shaw cell. J. Fluid Mech. 352, 305330.CrossRefGoogle Scholar
Bretherton, F.P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10 (2), 166188.CrossRefGoogle Scholar
Burgess, D. & Foster, M.R. 1990 Analysis of the boundary conditions for a Hele-Shaw bubble. Phys. Fluids A: Fluid Dyn. 2 (7), 11051117.CrossRefGoogle Scholar
Bush, J.W.M. 1997 The anomalous wake accompanying bubbles rising in a thin gap: a mechanically forced Marangoni flow. J. Fluid Mech. 352, 283303.CrossRefGoogle Scholar
Cantat, I. 2013 Liquid meniscus friction on a wet wall: bubbles, lamellae and foams. Phys. Fluids 25 (3), 031303.CrossRefGoogle Scholar
Dangla, R. 2012 2D droplet microfluidics driven by confinement gradients. PhD thesis, Ecole Polytechnique, France.Google Scholar
Eri, A. & Okumura, K. 2011 Viscous drag friction acting on a fluid drop confined in between two plates. Soft Matt. 7 (12), 56485653.CrossRefGoogle Scholar
Gallaire, F., Meliga, P., Laure, P. & Baroud, C.N. 2014 Marangoni induced force on a drop in a Hele-Shaw cell. Phys. Fluids 26, 062105.CrossRefGoogle Scholar
Huerre, A., Theodoly, O., Leshansky, A.M., Valignat, M.-P., Cantat, I. & Jullien, M.-C. 2015 Droplets in microchannels: dynamical properties of the lubrication film. Phys. Rev. Lett. 115 (6), 064501.CrossRefGoogle ScholarPubMed
Joanicot, M. & Ajdari, A. 2005 Droplet control for microfluidics. Science 309 (5736), 887888.CrossRefGoogle ScholarPubMed
Kopf-Sill, A.R. & Homsy, G.M. 1988 Bubble motion in a Hele-Shaw cell. Phys. Fluids 31 (1), 1826.CrossRefGoogle Scholar
Lee, S., Gallaire, F. & Baroud, C.N. 2012 Interface-induced recirculation within a stationary microfluidic drop. Soft Matt. 8 (41), 1075010758.CrossRefGoogle Scholar
Ling, Y., Fullana, J.-M., Popinet, S. & Josserand, C. 2016 Droplet migration in a Hele-Shaw cell: effect of the lubrication film on the droplet dynamics. Phys. Fluids 28 (6), 062001.CrossRefGoogle Scholar
Maruvada, S.R.K. & Park, C.-W. 1996 Retarded motion of bubbles in Hele-Shaw cells. Phys. Fluids 8 (12), 32293233.CrossRefGoogle Scholar
Miralles, V., Rio, E., Cantat, I. & Jullien, M.-C. 2016 Investigating the role of a poorly soluble surfactant in a thermally driven 2D microfoam. Soft Matt. 12 (33), 70567062.CrossRefGoogle Scholar
Mysels, K.J., Shinoda, K. & Frankel, S. 1959 Soap Films: Study of Their Thinning and a Bibliography. Pergamon.Google Scholar
Nadim, A., Borhan, A. & Haj-Hariri, H. 1996 Tangential stress and marangoni effects at a fluid–fluid interface in a Hele-Shaw cell. J. Colloid Interface Sci. 181 (1), 159164.CrossRefGoogle Scholar
Nagel, M. & Gallaire, F. 2015 Boundary elements method for microfluidic two-phase flows in shallow channels. Comput. Fluids 107, 272284.CrossRefGoogle Scholar
Park, C.-W. & Homsy, G.M. 1984 Two-phase displacement in Hele-Shaw cells: theory. J. Fluid Mech. 139, 291308.CrossRefGoogle Scholar
Park, C.-W., Maruvada, S.R.K. & Yoon, D.-Y. 1994 The influence of surfactant on the bubble motion in Hele-Shaw cells. Phys. Fluids 6 (10), 32673275.CrossRefGoogle Scholar
Reichert, B. 2017 Dynamique d’une goutte 2D dans une cellule de Hele-Shaw. PhD thesis, Paris Sciences et Lettres (ComUE), France.Google Scholar
Reichert, B., Cantat, I. & Jullien, M.-C. 2019 Predicting droplet velocity in a Hele-Shaw cell. Phys. Rev. Fluids 4 (11), 113602.CrossRefGoogle Scholar
Reichert, B., Huerre, A., Theodoly, O., Valignat, M.-P., Cantat, I. & Jullien, M.-C. 2018 Topography of the lubrication film under a pancake droplet travelling in a Hele-Shaw cell. J. Fluid Mech. 850, 708732.CrossRefGoogle Scholar
Roberts, C.C., Roberts, S.A., Nemer, M.B. & Rao, R.R. 2014 Circulation within confined droplets in Hele-Shaw channels. Phys. Fluids 26, 032105.CrossRefGoogle Scholar
Scriven, L.E. & Sternling, C.V. 1960 The Marangoni effects. Nature 187 (4733), 186188.CrossRefGoogle Scholar
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2011 Droplet based microfluidics. Rep. Prog. Phys. 75 (1), 016601.CrossRefGoogle ScholarPubMed
Seiwert, J., Dollet, B. & Cantat, I. 2014 Theoretical study of the generation of soap films: role of interfacial visco-elasticity. J. Fluid Mech. 739, 124142.CrossRefGoogle Scholar
Shen, B., Leman, M., Reyssat, M. & Tabeling, P. 2014 Dynamics of a small number of droplets in microfluidic Hele-Shaw cells. Exp. Fluids 55 (5), 110.CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid. Mech. 36 (1), 381411.CrossRefGoogle Scholar
Taylor, G. & Saffman, P.G. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Q. J. Mech. Appl. Maths 12 (3), 265279.CrossRefGoogle Scholar
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A.P. 2008 Critical review: droplet microfluidics. Lab Chip 8 (2), 198220.CrossRefGoogle Scholar
Xia, Y. & Whitesides, G.M. 1998 Soft lithography. Annu. Rev. Mater. Res. 28 (1998), 153184.Google Scholar
Zhu, L. & Gallaire, F. 2016 A pancake droplet translating in a Hele-Shaw cell: lubrication film and flow field. J. Fluid Mech. 798, 955969.CrossRefGoogle Scholar