Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T01:13:14.490Z Has data issue: false hasContentIssue false

Droplet breakup in airflow with strong shear effect

Published online by Cambridge University Press:  06 May 2022

Zhikun Xu
Affiliation:
State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China
Tianyou Wang
Affiliation:
State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China
Zhizhao Che*
Affiliation:
State Key Laboratory of Engines, Tianjin University, Tianjin 300072, PR China
*
Email address for correspondence: [email protected]

Abstract

The deformation and breakup of droplets in airflows is important in spray and atomisation processes, but the shear effect in non-uniform airflow is rarely reported. In this study, the deformation and breakup of droplets in a shear flow of air is investigated experimentally using high-speed imaging, digital image processing and particle image velocimetry. The results show that in airflow with a strong shear effect, the droplet breakup exhibits unique features due to the uplift and stretching produced by the interaction between the deformed droplet and the shear layer. The breakup process can be divided into three stages according to the droplet morphology and the breakup mechanism, namely the sheet breakup, the swing breakup and the rim breakup stages. Theoretical analysis reveals that the swing breakup is governed by the transverse Rayleigh–Taylor instability. A regime map of the droplet breakup is produced, and the transitions between different regimes are obtained theoretically. The stretching liquid film during the droplet deformation and the fragment size distribution after droplet breakup are analysed quantitatively, and the results show that they are determined by the competition of breakup at different stages affected by the shear. Finally, the effect of the droplet viscosity is investigated, and the viscosity inhibits the droplet breakup in a strong shear airflow.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D.M., Berchielli, A. & Connolly, E.K. 2008 Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. Intl J. Multiphase Flow 34 (2), 161175.CrossRefGoogle Scholar
Avulapati, M.M. & Venkata, R.R. 2013 Experimental studies on air-assisted impinging jet atomization. Intl J. Multiphase Flow 57, 88101.CrossRefGoogle Scholar
Cao, X., Sun, Z., Li, W., Liu, H. & Yu, Z. 2007 A new breakup regime of liquid drops identified in a continuous and uniform air jet flow. Phys. Fluids 19 (5), 057103.CrossRefGoogle Scholar
Chandrasekhar, S. 2013 Hydrodynamics and Hydromagnetic Stability. Courier Corporation.Google Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Dai, Z. & Faeth, G.M. 2001 Temporal properties of secondary drop breakup in the multimode breakup regime. Intl J. Multiphase Flow 27 (2), 217236.CrossRefGoogle Scholar
Delon, A., Cartellier, A. & Matas, J.-P. 2018 Flapping instability of a liquid jet. Phys. Rev. Fluids 3 (4), 043901.CrossRefGoogle Scholar
Dorschner, B., Biasiori-Poulanges, L., Schmidmayer, K., El-Rabii, H. & Colonius, T. 2020 On the formation and recurrent shedding of ligaments in droplet aerobreakup. J. Fluid Mech. 904, A20.CrossRefGoogle Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Flock, A.K., Guildenbecher, D.R., Chen, J., Sojka, P.E. & Bauer, H.J. 2012 Experimental statistics of droplet trajectory and air flow during aerodynamic fragmentation of liquid drops. Intl J. Multiphase Flow 47, 3749.CrossRefGoogle Scholar
Garcia-Magarino, A., Sor, S. & Velazquez, A. 2015 Experimental characterization of water droplet deformation and breakup in the vicinity of a moving airfoil. Aerosp. Sci. Technol. 45, 490500.CrossRefGoogle Scholar
Gorokhovski, M.A. & Saveliev, V.L. 2003 Analyses of Kolmogorov's model of breakup and its application into Lagrangian computation of liquid sprays under air-blast atomization. Phys. Fluids 15 (1), 184192.CrossRefGoogle Scholar
Guildenbecher, D.R., Gao, J., Chen, J. & Sojka, P.E. 2017 Characterization of drop aerodynamic fragmentation in the bag and sheet-thinning regimes by crossed-beam, two-view, digital in-line holography. Intl J. Multiphase Flow 94, 107122.CrossRefGoogle Scholar
Guildenbecher, D.R., Lopez-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46 (3), 371402.CrossRefGoogle Scholar
Hadj-Achour, M., Rimbert, N., Gradeck, M. & Meignen, R. 2021 Fragmentation of a liquid metal droplet falling in a water pool. Phys. Fluids 33 (10), 103315.CrossRefGoogle Scholar
Hsiang, L.-P. & Faeth, G.M. 1995 Drop deformation and breakup due to shock wave and steady disturbances. Intl J. Multiphase Flow 21 (4), 545560.CrossRefGoogle Scholar
Huck, P.D., Osuna-Orozco, R., Machicoane, N. & Aliseda, A. 2022 Spray dispersion regimes following atomization in a turbulent co-axial gas jet. J. Fluid Mech. 932, A36.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2021 On aerodynamic droplet breakup. J. Fluid Mech. 913, A33.CrossRefGoogle Scholar
Jain, M., Prakash, R.S., Tomar, G. & Ravikrishna, R.V. 2015 Secondary breakup of a drop at moderate Weber numbers. Proc. R. Soc. A 471 (2177), 20140930.CrossRefGoogle Scholar
Jain, S.S., Tyagi, N, Prakash, R.S., Ravikrishna, R.V. & Tomar, G 2019 Secondary breakup of drops at moderate Weber numbers: effect of density ratio and Reynolds number. Intl J. Multiphase Flow 117, 2541.CrossRefGoogle Scholar
Jalaal, M. & Mehravaran, K. 2014 Transient growth of droplet instabilities in a stream. Phys. Fluids 26 (1), 012101.CrossRefGoogle Scholar
Jiao, D., Jiao, K., Zhang, F. & Du, Q. 2019 Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles. Fuel 247, 302314.CrossRefGoogle Scholar
Joseph, D.D., Beavers, G.S. & Funada, T. 2002 Rayleigh–Taylor instability of viscoelastic drops at high Weber numbers. J. Fluid Mech. 453, 109132.CrossRefGoogle Scholar
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25 (6–7), 12631303.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 On the log-normal distribution of particles sizes during breakup process. In Dokl. Akad. Nauk. SSSR, pp. 99–101.Google Scholar
Kundu, P.K. & Cohen, I.M. 2008 Fluid Mechanics, 4th edn. Academic Press.Google Scholar
Lefebvre, A.H. & McDonell, V.G. 2017 Atomization and Sprays. CRC.CrossRefGoogle Scholar
Lopez-Gavilan, P., Velazquez, A., Garcia-Magarino, A. & Sor, S. 2020 Breakup criterion for droplets exposed to the unsteady flow generated by an incoming aerodynamic surface. Aerosp. Sci. Technol. 98, 105687.CrossRefGoogle Scholar
Marmottant, P.H. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.CrossRefGoogle Scholar
Meng, J.C. & Colonius, T. 2017 Numerical simulation of the aerobreakup of a water droplet. J. Fluid Mech. 835, 11081135.CrossRefGoogle Scholar
Novikov, E.A. & Dommermuth, D.G. 1997 Distribution of droplets in a turbulent spray. Phys. Rev. E 56, 5479.CrossRefGoogle Scholar
Omidvar, A. 2019 Development and assessment of an improved droplet breakup model for numerical simulation of spray in a turbulent flow field. Appl. Therm. Engng 156, 432443.CrossRefGoogle Scholar
Opfer, L., Roisman, I.V., Venzmer, J., Klostermann, M. & Tropea, C. 2014 Droplet–air collision dynamics: evolution of the film thickness. Phys. Rev. E 89 (1), 013023.CrossRefGoogle ScholarPubMed
Poon, E.K.W., Lou, J., Quan, S. & Ooi, A.S.H. 2012 Effects of streamwise rotation on the dynamics of a droplet. Phys. Fluids 24 (8), 082107.CrossRefGoogle Scholar
Radhakrishna, V., Shang, W.X., Yao, L.C., Chen, J. & Sojka, P.E. 2021 Experimental characterization of secondary atomization at high Ohnesorge numbers. Intl J. Multiphase Flow 138, 23.CrossRefGoogle Scholar
Rajamanickam, K. & Basu, S. 2017 On the dynamics of vortex-droplet interactions, dispersion and breakup in a coaxial swirling flow. J. Fluid Mech. 827, 572613.CrossRefGoogle Scholar
Ricard, G., Machicoane, N., Osuna-Orozco, R., Huck, P.D. & Aliseda, A. 2021 Role of convective acceleration in the interfacial instability of liquid-gas coaxial jets. Phys. Rev. Fluids 6 (8), 084302.CrossRefGoogle Scholar
Rimbert, N. & Sero-Guillaume, O. 2004 Log-stable laws as asymptotic solutions to a fragmentation equation: application to the distribution of droplets in a high Weber-number spray. Phys. Rev. E 69 (5), 056316.CrossRefGoogle Scholar
Roisman, I.V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.CrossRefGoogle Scholar
Roisman, I.V., Berberović, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21 (5), 052103.CrossRefGoogle Scholar
Saveliev, V.L. & Gorokhovski, M.A. 2012 Renormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades. Phys. Rev. E 86 (6), 061112.CrossRefGoogle ScholarPubMed
Schmelz, F. & Walzel, P. 2003 Breakup of liquid droplets in accelerated gas flows. Atomiz. Sprays 13 (4), 357372.CrossRefGoogle Scholar
Sharma, S., Singh, A.P., Rao, S.S., Kumar, A. & Basu, S. 2021 Shock induced aerobreakup of a droplet. J. Fluid Mech. 929, A27.CrossRefGoogle Scholar
Theofanous, T.G. 2011 Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43 (1), 661690.CrossRefGoogle Scholar
Theofanous, T.G. & Li, G.J. 2008 On the physics of aerobreakup. Phys. Fluids 20 (5), 052103.CrossRefGoogle Scholar
Theofanous, T.G., Mitkin, V.V., Ng, C.L., Chang, C.H., Deng, X. & Sushchikh, S. 2012 The physics of aerobreakup. II. Viscous liquids. Phys. Fluids 24 (2), 022104.CrossRefGoogle Scholar
Vallon, R., Abid, M. & Anselmet, F. 2021 Multimodal distributions of agricultural-like sprays: a statistical analysis of drop population from a pressure-atomized spray. Phys. Rev. Fluids 6 (2), 023604.CrossRefGoogle Scholar
Villermaux, E. 1998 Mixing and spray formation in coaxial jets. J. Propul. Power 14 (5), 807817.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.CrossRefGoogle Scholar
Villermaux, E. 2020 Fragmentation versus cohesion. J. Fluid Mech. 898, P1.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697702.CrossRefGoogle Scholar
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.CrossRefGoogle Scholar
Villermaux, E., Marmottant, P. & Duplat, J. 2004 Ligament-mediated spray formation. Phys. Rev. Lett. 92 (7), 074501.CrossRefGoogle ScholarPubMed
Wang, Z.G., Hopfes, T., Giglmaier, M. & Adams, N.A. 2020 Effect of Mach number on droplet aerobreakup in shear stripping regime. Exp. Fluids 61 (9), 193.CrossRefGoogle ScholarPubMed
White, F.M. 2003 Fluid Mechanics. McGraw-Hill College.Google Scholar
Xu, Z.K., Wang, T.Y. & Che, Z.Z. 2020 Droplet deformation and breakup in shear flow of air. Phys. Fluids 32 (5), 052109.Google Scholar
Yang, W., Jia, M., Sun, K. & Wang, T.Y. 2016 Influence of density ratio on the secondary atomization of liquid droplets under highly unstable conditions. Fuel 174, 2535.CrossRefGoogle Scholar
Zhao, H., Liu, H.F., Cao, X.K., Li, W.F. & Xu, J.L. 2011 Breakup characteristics of liquid drops in bag regime by a continuous and uniform air jet flow. Intl J. Multiphase Flow 37 (5), 530534.CrossRefGoogle Scholar
Zhao, H., Liu, H.F., Li, W.F. & Xu, J.L. 2010 Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Phys. Fluids 22 (11), 114103.CrossRefGoogle Scholar
Zhao, H., Liu, H.F., Xu, J.L., Li, W.F. & Lin, K.F. 2013 Temporal properties of secondary drop breakup in the bag-stamen breakup regime. Phys. Fluids 25 (5), 054102.CrossRefGoogle Scholar
Zhao, H., Nguyen, D., Duke, D.J., Edgington-Mitchell, D., Soria, J., Liu, H.F. & Honnery, D. 2019 Effect of turbulence on drop breakup in counter air flow. Intl J. Multiphase Flow 120, 103108.CrossRefGoogle Scholar

Xu et al. Supplementary Movie 1

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 1(Video)
Video 3.7 MB

Xu et al. Supplementary Movie 2

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 2(Video)
Video 5.7 MB

Xu et al. Supplementary Movie 3

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 3(Video)
Video 3.7 MB

Xu et al. Supplementary Movie 4

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 4(Video)
Video 1.5 MB

Xu et al. Supplementary Movie 5

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 5(Video)
Video 815.5 KB

Xu et al. Supplementary Movie 6

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 6(Video)
Video 1.3 MB

Xu et al. Supplementary Movie 7

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 7(Video)
Video 1.9 MB

Xu et al. Supplementary Movie 8

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 8(Video)
Video 1.9 MB

Xu et al. Supplementary Movie 9

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 9(Video)
Video 2.6 MB

Xu et al. Supplementary Movie 10

Movie caption can be found in Supplementary Movie Captions PDF

Download Xu et al. Supplementary Movie 10(Video)
Video 8.3 MB
Supplementary material: PDF

Xu et al. Supplementary Movie Captions

Xu et al. Supplementary Movie Captions

Download Xu et al. Supplementary Movie Captions(PDF)
PDF 116.6 KB
Supplementary material: PDF

Xu et al. Supplementary Material

Xu et al. Supplementary Material

Download Xu et al. Supplementary Material(PDF)
PDF 742.2 KB