Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:27:41.294Z Has data issue: false hasContentIssue false

Drag reduction on a transonic airfoil

Published online by Cambridge University Press:  17 May 2022

Maurizio Quadrio*
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milan, Italy
Alessandro Chiarini
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milan, Italy
Jacopo Banchetti
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156 Milan, Italy
Davide Gatti
Affiliation:
Institute for Fluid Mechanics, Karlsruhe Institute of Technology, Kaiserstr. 10, 76131 Karlsruhe, Germany
Antonio Memmolo
Affiliation:
High Performance Computing Department, CINECA Interuniversity Consortium, 40033 Bologna, Italy
Sergio Pirozzoli
Affiliation:
Dipartimento di Ingegneria Meccanica e Aerospaziale, La Sapienza Università di Roma, Via Eudossiana, 00184 Rome, Italy
*
Email address for correspondence: [email protected]

Abstract

Flow control for turbulent skin-friction drag reduction is applied to a transonic airfoil to improve its aerodynamic performance. The study is based on direct numerical simulations (with up to 1.8 billion cells) of the compressible turbulent flow around a supercritical airfoil, at Reynolds and Mach numbers of $Re_\infty = 3 \times 10^{5}$ and $M_\infty =0.7$. Control via spanwise forcing is applied over a fraction of the suction side of the airfoil. Besides locally reducing friction, the control modifies the shock wave and significantly improves the aerodynamic efficiency of the airfoil by increasing lift and decreasing drag. Hence, the airfoil can achieve the required lift at a lower angle of attack and with a lower drag. Estimates at the aircraft level indicate that substantial savings are possible; when control is active, its energy cost becomes negligible thanks to the small application area. We suggest that skin-friction drag reduction should be considered not only as a goal, but also as a tool to improve the global aerodynamics of complex flows.

Type
JFM Rapids
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, M., Meysonnat, P.S. & Schröder, W. 2019 Actively reduced airfoil drag by transversal surface waves. Flow Turbul. Combust. 102 (4), 865886.10.1007/s10494-018-9998-zCrossRefGoogle Scholar
Albers, M. & Schröder, W. 2021 Lower drag and higher lift for turbulent airfoil flow by moving surfaces. Intl J. Heat Fluid Flow 88, 108770.10.1016/j.ijheatfluidflow.2020.108770CrossRefGoogle Scholar
Atzori, M., Vinuesa, R., Fahland, G., Stroh, A., Gatti, D., Frohnapfel, B. & Schlatter, P. 2020 Aerodynamic effects of uniform blowing and suction on a NACA4412 airfoil. Flow Turbul. Combust. 105 (3), 735759.10.1007/s10494-020-00135-zCrossRefGoogle Scholar
Banchetti, J. 2020 Drag reduction systems towards aeronautical applications. PhD thesis, Politecnico di Milano. Available at: http://www.politesi.polimi.it.Google Scholar
Banchetti, J., Luchini, P. & Quadrio, M. 2020 Turbulent drag reduction over curved walls. J. Fluid Mech. 896, A10.10.1017/jfm.2020.338CrossRefGoogle Scholar
Bruce, P.J.K. & Colliss, S.P. 2015 Review of research into shock control bumps. Shock Waves 25 (5), 451471.10.1007/s00193-014-0533-4CrossRefGoogle Scholar
Bushnell, D.M. 2004 Shock wave drag reduction. Annu. Rev. Fluid Mech. 36 (1), 8196.10.1146/annurev.fluid.36.050802.122110CrossRefGoogle Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152 (2), 517549.10.1006/jcph.1999.6238CrossRefGoogle Scholar
Fahland, G., Stroh, A., Frohnapfel, B., Atzori, M., Vinuesa, R., Schlatter, P. & Gatti, D. 2021 Investigation of blowing and suction for turbulent flow control on airfoils. AIAA J. 59 (11), 44224436.10.2514/1.J060211CrossRefGoogle Scholar
Gatti, D. & Quadrio, M. 2016 Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553558.10.1017/jfm.2016.485CrossRefGoogle Scholar
Hosseini, S.M., Vinuesa, R., Schlatter, P., Hanifi, A. & Henningson, D.S. 2016 Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Intl J. Heat Fluid Flow 61, 117128.10.1016/j.ijheatfluidflow.2016.02.001CrossRefGoogle Scholar
Kornilov, V. 2021 Combined blowing/suction flow control on low-speed airfoils. Flow Turbul. Combust. 106 (1), 81108.10.1007/s10494-020-00157-7CrossRefGoogle Scholar
Laflin, K.R., Klausmeyer, S.M., Zickuhr, T., Vassberg, J.C., Wahls, R.A., Morrison, J.H., Brodersen, O.P., Rakowitz, M.E., Tinoco, E.N. & Godard, J.-L. 2005 Data summary from second AIAA computational fluid dynamics drag prediction workshop. J. Aircraft 42 (5), 11651178.10.2514/1.10771CrossRefGoogle Scholar
Luchini, P. 1996 Reducing the turbulent skin friction. In Computational Methods in Applied Sciences 1996 (ed. J.-A. Desideri et al. ). Wiley.Google Scholar
Mele, B., Tognaccini, R. & Catalano, P. 2016 Performance assessment of a transonic wing-body configuration with riblets installed. J. Aircraft 53 (1), 129140.10.2514/1.C033220CrossRefGoogle Scholar
Memmolo, A., Bernardini, M. & Pirozzoli, S. 2018 Scrutiny of buffet mechanisms in transonic flow. Intl J. Numer. Meth. Heat Fluid Flow 28 (5), 10311046.10.1108/HFF-08-2016-0300CrossRefGoogle Scholar
Nguyen, V.-T., Ricco, P. & Pironti, G. 2021 Separation drag reduction through a spanwise oscillating pressure gradient. J. Fluid Mech. 912, A20.10.1017/jfm.2020.1124CrossRefGoogle Scholar
Poinsot, T.J & Lele, S.K 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.10.1016/0021-9991(92)90046-2CrossRefGoogle Scholar
Quadrio, M. & Ricco, P. 2004 Critical assessment of turbulent drag reduction through spanwise wall oscillation. J. Fluid Mech. 521, 251271.10.1017/S0022112004001855CrossRefGoogle Scholar
Quadrio, M., Ricco, P. & Viotti, C. 2009 Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.10.1017/S0022112009006077CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 534.10.1017/jfm.2012.324CrossRefGoogle Scholar
Seifert, A., Bachar, T., Koss, D., Shepshelovich, M. & Wygnanski, I. 1993 Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J. 31 (11), 2052–2060.10.2514/3.49121CrossRefGoogle Scholar
Skote, M. 2012 Temporal and spatial transients in turbulent boundary layer flow over an oscillating wall. Intl J. Heat Fluid Flow 38, 112.10.1016/j.ijheatfluidflow.2012.08.004CrossRefGoogle Scholar
Spalart, P.R. & McLean, J.D. 2011 Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. Lond. A 369 (1940), 15561569.Google ScholarPubMed
Yao, J. & Hussain, F. 2019 Supersonic turbulent boundary layer drag control using spanwise wall oscillation. J. Fluid Mech. 880, 388429.10.1017/jfm.2019.727CrossRefGoogle Scholar
Yudhistira, I. & Skote, M. 2011 Direct numerical simulation of a turbulent boundary layer over an oscillating wall. J. Turbul. 12 (9), 117.10.1080/14685248.2010.538397CrossRefGoogle Scholar
Zauner, M., De Tullio, N. & Sandham, N.D. 2019 Direct numerical simulations of transonic flow around an airfoil at moderate Reynolds numbers. AIAA J. 57 (2), 597607.10.2514/1.J057335CrossRefGoogle Scholar
Zhang, W. & Samtaney, R. 2016 Assessment of spanwise domain size effect on the transitional flow past an airfoil. Comput. Fluids 124, 3953.10.1016/j.compfluid.2015.10.008CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467XCrossRefGoogle Scholar