Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-01T00:43:51.067Z Has data issue: false hasContentIssue false

DNS study of particle-bed–turbulence interactions in an oscillatory wall-bounded flow

Published online by Cambridge University Press:  01 March 2016

Chaitanya D. Ghodke
Affiliation:
School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA
Sourabh V. Apte*
Affiliation:
School of Mechanical, Industrial and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331, USA
*
Email address for correspondence: [email protected]

Abstract

Particle-resolved direct numerical simulations (DNS) are performed to investigate the behaviour of an oscillatory flow field over a rough bed, corresponding to the experimental set-up of Keiller & Sleath (J. Fluid Mech., vol. 73 (04), 1976, pp. 673–691) for transitional and turbulent flows over a range of Reynolds numbers (95–400) based on the Stokes-layer thickness. It is shown that the roughness modulates the near-bed turbulence, produces streamwise horseshoe structures which then undergo distortion and breaking, and therefore reduces the large-scale anisotropy. A fully developed equilibrium turbulence is observed in the central part of the oscillation cycle, with two-component turbulence in the near-bed region and cigar-shaped turbulence in the outer region. A double averaging of the flow field reveals spatial inhomogeneities at the roughness scale and alternate paths of energy transport in the turbulent kinetic energy (TKE) budget. Contrary to the unidirectional, steady flow over rough beds, bed-induced production terms are important and comparable to the shear production term. It is shown that the near-bed velocity and pressure fluctuations are non-Gaussian, a result of critical importance for the modelling of incipient motion of sediment grains.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

van der A, D., O’Donoghue, T., Davies, A. G. & Ribberink, J. S. 2011 Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow. J. Fluid Mech. 684, 251283.CrossRefGoogle Scholar
Antonia, R. A. & Krogstad, P.-A. 2001 Turbulence struture in boundary layers over different types of surface roughness. Fluid Dyn. Res. 28, 139157.Google Scholar
Apte, S. V. & Finn, J. R. 2013 A variable-density fictitious domain method for particulate flows with broad range of particle–fluid density ratios. J. Comput. Phys. 243, 109129.Google Scholar
Apte, S. V., Mahesh, K. & Moin, P. 2009a Large-eddy simulation of evaporating spray in a coaxial combustor. Proc. Combust. Inst. 32, 22472256.Google Scholar
Apte, S. V., Mahesh, K., Moin, P. & Gorokhovski, M. 2009b Stochastic modeling of atomizing spray in a complex swirl injector using large-eddy simulation. Proc. Combust. Inst. 32, 22572266.Google Scholar
Apte, S. V., Mahesh, K., Moin, P. & Oefelein, J. C. 2003 Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Intl J. Multiphase Flow 29 (8), 13111331.Google Scholar
Apte, S. V., Martin, M. & Patankar, N. A. 2008 A numerical method for fully resolved simulation (FRS) of rigid particle-flow interactions in complex flows. J. Comput. Phys. 228 (8), 27122738.Google Scholar
Bagnold, R. A. 1946 Motion of waves in shallow water, interaction between waves and sand bottoms. Proc. R. Soc. Lond. A 187, 118.Google Scholar
Chan-Braun, C., Garcia-Villalba, M. & Uhlmann, M. 2011 Force and torque acting on particles in transitionally rough open-channel flow. J. Fluid Mech. 684 (441).Google Scholar
Chen, D., Chen, C., Tang, F.-E., Stansby, P. & Li, M. 2007 Boundary layer structure of oscillatory open-channel shallow flows over smooth and rough beds. Exp. Fluids 42 (5), 719736.CrossRefGoogle Scholar
Choi, K. & Lumley, J. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.CrossRefGoogle Scholar
Corvaro, S., Miozzi, M., Postacchini, M., Mancinelli, A. & Brocchini, M. 2014 Fluid–particle interaction and generation of coherent structures over permeable beds: an experimental analysis. Adv. Water Resour. 72, 97109.CrossRefGoogle Scholar
Ding, L. & Zhang, Q.-H. 2010 Lattice Boltzmann simulation to characterize roughness effects of oscillatory boundary layer flow over a rough bed. In Proceedings of the 32nd Conference on Coastal Engineering, pp. 111. Coastal Engineering Research Council.Google Scholar
Dixen, M., Hatipoglu, F., Sumer, B. M. & Fredsøe, J. 2008 Wave boundary layer over a stone-covered bed. Coast. Engng 55, 120.Google Scholar
Einstein, H.1950 The bed-load function for sediment transportation in open channel flows. US Department of Agriculture, Washington, DC.Google Scholar
Finn, J. & Apte, S. V. 2013 Relative performance of body fitted and fictitious domain simulations of flow through fixed packed beds of spheres. Intl J. Multiphase Flow 56, 5471.Google Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.CrossRefGoogle Scholar
Fornarelli, F. & Vittori, G. 2009 Oscillatory boundary layer close to a rough wall. Eur. J. Mech. (B/Fluids) 28, 283295.Google Scholar
Ghodke, C. D., Apte, S. V. & Urzay, J. 2014a Direct numerical simulations of oscillatory wall-bounded flow over a closely-packed fixed bed of spherical particles. In Proceedings of the Center for Turbulence Research Summer Program, pp. 4755. Stanford University.Google Scholar
Ghodke, C. D., Skitka, J. & Apte, S. V. 2014b Characterization of oscillatory boundary layer over a closely packed bed of sediment particles. J. Comput. Multiphase Flows 6 (4), 187197.Google Scholar
Ikeda, T. & Durbin, P. A. 2007 Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235263.Google Scholar
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265297.Google Scholar
Jeong, J. & Hussain, F. 2006 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Jiménez, J. 2004 Turbulent flow over rough walls. Annu. Rev. Fluid Mech. 36, 173196.Google Scholar
Jonsson, I. G. & Carlsen, N. A. 1976 Experimental and theoretical investigations in an oscillatory turbulent boundary layer. J. Hydraul. Res. 14, 4560.Google Scholar
Kamphuis, J. W. 1975 Friction factors under oscillatory waves. J. Waterway, Harbors and Coastal Eng. Div., Proc. ASCE 101 (WW2), 135144.Google Scholar
Keiller, D. C. & Sleath, J. F. A. 1976 Velocity measurements close to a rough plate oscillating in its own plane. J. Fluid Mech. 73 (04), 673691.Google Scholar
Kemp, P. H. & Simons, R. R. 1982 The interaction of waves with a turbulent current: waves propagating against the current. J. Fluid Mech. 130, 7389.CrossRefGoogle Scholar
Kempe, T., Vowinckel, B. & Frőhlich, J. 2014 On the relevance of collision modeling for interface-resolving simulations of sediment transport in open channel flow. Intl J. Multiphase Flow 58, 214235.Google Scholar
Krogstad, P.-A., Andersson, H. I., Bakken, O. M. & Ashrafin, A. 2005 An experimental and numerical study of channel flow with rough walls. J. Fluid Mech. 530, 327352.Google Scholar
Krogstad, P.-A. & Antonia, R. A. 1994 Stucture of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.Google Scholar
Krogstad, P.-A., Antonia, R. A. & Browne, L. W. B. 1992 Comparison between rough and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.Google Scholar
Krstic, R. V. & Fernando, H. J. S. 2001 The nature of rough-wall oscillatory boundary layers. J. Hydraul. Res. 30, 655666.Google Scholar
Mahesh, K., Constantinescu, G., Apte, S., Iaccarino, G., Ham, F. & Moin, P. 2006 Large-eddy simulation of reacting turbulent flows in complex geometries. J. Appl. Mech. 73, 381.Google Scholar
Mignot, E., Bartheleemy, E. & Hurther, D. 2009 Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 618, 279303.Google Scholar
Moin, P. & Apte, S. V. 2006 Large-eddy simulation of realistic gas turbine combustors. AIAA J. 44 (4), 698708.CrossRefGoogle Scholar
Mujal-Colilles, A., Mier, J. M., Christensen, K. T., Bateman, A. & Garcia, M. H. 2014 PIV experiments in rough-wall, laminar-to-turbulent, oscillatory boundary-layer flows. Exp. Fluids 55, 1633.Google Scholar
Papanicolaou, A., Diplas, P., Evaggelopoulos, N. & Fotopoulos, S. 2002 Stochastic incipient motion criterion for spheres under various bed packing conditions. J. Hydraul. Engng 128, 369380.Google Scholar
Raupach, M., Antonia, R. & Rajagopalan, S. 1991 Rough-wall boundary layers. Appl. Mech. Rev. 44, 125.Google Scholar
Raupach, M. & Thom, A. 1981 Turbulence in and above plant canopies. Annu. Rev. Fluid Mech. 13, 97129.Google Scholar
Sleath, J. F. A. 1987 Turbulent oscillatory flows over rough beds. J. Fluid Mech. 182, 369409.Google Scholar
Suekane, T., Yokouchi, Y. & Hirai, S. 2003 Inertial flow structures in a simple-packed bed of spheres. AIChE J. 49 (1), 1017.Google Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11, 97120.Google Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.Google Scholar
Wu, F.-C. & Kuo-Hsin, Y. 2004 Entrainment probabilities of mixed-size sediment incorporating near-bed coherent flow structures. J. Hydraul. Engng 130, 11871197.Google Scholar
Yuan, J. & Piomelli, U. 2014a Numerical simulations of sink-flow boundary layers over rough surfaces. Phys. Fluids 26, 015113.Google Scholar
Yuan, J. & Piomelli, U. 2014b Roughness effects on the Reynolds stress budgets in near-wall turbulence. J. Fluid Mech. 760, R1.Google Scholar