Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T15:20:55.511Z Has data issue: false hasContentIssue false

DNS of compressible turbulent boundary layers and assessment of data/scaling-law quality

Published online by Cambridge University Press:  12 March 2018

Christoph Wenzel*
Affiliation:
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, 70550 Stuttgart, Germany
Björn Selent
Affiliation:
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, 70550 Stuttgart, Germany
Markus Kloker
Affiliation:
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, 70550 Stuttgart, Germany
Ulrich Rist
Affiliation:
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, 70550 Stuttgart, Germany
*
Email address for correspondence: [email protected]

Abstract

A direct-numerical-simulation study of spatially evolving compressible zero-pressure-gradient turbulent boundary layers is presented for a fine-meshed range of Mach numbers from 0.3 to 2.5. The use of an identical set-up for all subsonic and supersonic cases warrants proper comparability and allows a highly reliable quantitative evaluation of compressible mean-flow scaling laws and the settlement on a commonly accepted compressible mean-flow velocity profile in the considered Mach and Reynolds number range. All data are compared to the literature data-base where significant data scattering can be observed. The skin-friction distribution was found in excellent agreement with the prediction by the van Driest-II transformation. Contrary to the prevailing appraisal, the wake region of the mean-velocity profile is observed to scale much better with the momentum-thickness Reynolds number calculated with the far-field-viscosity than with the wall-viscosity. The time-averaged velocity fluctuations, density-scaled according to Morkovin’s hypothesis, are found to be noticeably influenced by compressibility effects in the inner layer as well as in the wake region. Allowing wall-temperature fluctuations affects neither the density nor velocity fluctuations.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L., Leschziner, M., Poggie, J., Bisek, N. J. & Gaitonde, D. 2017 Multi-scale interactions in a compressible boundary layer. J. Turbul. 18 (8), 760780.Google Scholar
Alfredsson, P. H., Johansson, A. V., Haritonidis, J. H. & Eckelmann, H. 1988 The fluctuating wall-shear stress and the velocity field in the viscous sublayer. Phys. Fluids 31 (5), 10261033.Google Scholar
Babucke, A.2009 Direct numerical simulation of noise-generation mechanisms in the mixing layer of a jet. PhD thesis, University of Stuttgart.Google Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23 (8), 085102.Google Scholar
Bradshaw, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9 (1), 3352.Google Scholar
Cebeci, T. & Smith, A. M. O. 1974 Analysis of Turbulent Boundary Layers. Academic Press.Google Scholar
Chauhan, K. A., Monkewitz, P. A. & Nagib, H. M. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41 (2), 021404.Google Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (02), 191226.CrossRefGoogle Scholar
Coles, D. 1964 The turbulent boundary layer in a compressible fluid. Phys. Fluids 7 (9), 14031423.Google Scholar
Colonius, T., Lele, S. K. & Moin, P. 1993 Boundary conditions for direct computation of aerodynamic sound generation. AIAA J. 31 (9), 15741582.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.Google Scholar
Erm, L. P. & Joubert, P. N. 1991 Low-Reynolds-number turbulent boundary layers. J. Fluid Mech. 230, 144.Google Scholar
Erm, L. P., Joubert, P. N. & Smits, A. J. 1987 Low Reynolds number turbulent boundary layers on a smooth flat surface in a zero pressure gradient. In Turbulent Shear Flows 5, pp. 186196. Springer.CrossRefGoogle Scholar
Fernholz, H. H. & Finley, P. J.1980 A critical commentary on mean flow data for two-dimensional compressible turbulent boundary layers. Tech. Rep. DTIC Document.Google Scholar
Fernholz, H. H. & Finley, P. J. 1996 The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data. Prog. Aerosp. Sci. 32 (4), 245311.CrossRefGoogle Scholar
Ferrante, A. & Elghobashi, S. 2004 A robust method for generating inflow conditions for direct simulations of spatially-developing turbulent boundary layers. J. Comput. Phys. 198 (1), 372387.Google Scholar
Gatski, T. B. & Bonnet, J.-P. 2013 Compressibility, Turbulence and High Speed Flow. Academic Press.Google Scholar
Gatski, T. B. & Erlebacher, G.2002 Numerical simulation of a spatially evolving supersonic turbulent boundary layer. NASA Tech. Mem. 2002-211934.Google Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech 414, 133.Google Scholar
Guo, Y. & Adams, N. A. 1994 Numerical investigation of supersonic turbulent boundary layers with high wall temperature. In Proceedings of the Summer Program of the Center for Turbulence Research. Stanford University.Google Scholar
Hatay, F. & Biringen, S.1995 Direct numerical simulation of low-Reynolds number supersonic turbulent boundary layers. AIAA Paper 95-0581.Google Scholar
Hopkins, E. J. & Inouye, M. 1971 An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J. 9 (6), 9931003.Google Scholar
Huang, P. G. & Coleman, G. N. 1994 Van Driest transformation and compressible wall-bounded flows. AIAA J. 32 (10), 21102113.CrossRefGoogle Scholar
Hui, G., De-Xun, F., Yan-Wen, M. & Xin-Liang, L. 2005 Direct numerical simulation of supersonic turbulent boundary layer flow. Chin. Phys. Lett. 22 (7), 17091712.Google Scholar
von Kármán, T. 1921 Über laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233252.CrossRefGoogle Scholar
Keller, M. A. & Kloker, M. J.2013 DNS of effusion cooling in a supersonic boundary-layer flow: influence of turbulence. AIAA Paper 2013-2897.Google Scholar
Keller, M. A. & Kloker, M. J. 2014 Effusion cooling and flow tripping in laminar supersonic boundary-layer flow. AIAA J. 53 (4), 902919.Google Scholar
Keller, M. A. & Kloker, M. J. 2016 Direct numerical simulation of foreign-gas film cooling in supersonic boundary-layer flow. AIAA J. 55 (1), 99111.CrossRefGoogle Scholar
Kim, Y., Castro, I. P. & Xie, Z.-T. 2013 Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible flow solvers. Comput. Fluids 84, 5668.Google Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652665.CrossRefGoogle Scholar
Kurz, H. B. E. & Kloker, M. J. 2014 Receptivity of a swept-wing boundary layer to micron-sized discrete roughness elements. J. Fluid Mech. 755, 6282.Google Scholar
Lagha, M., Kim, J., Eldredge, J. D. & Zhong, X. 2011 A numerical study of compressible turbulent boundary layers. Phys. Fluids 23 (1), 015106.CrossRefGoogle Scholar
Li, Q. & Coleman, G. N. 2004 DNS of an Oblique Shock Wave Impinging upon a Turbulent Boundary Layer, pp. 387396. Springer.Google Scholar
Li, W. & Xi-Yun, L. 2011 The effect of Mach number on turbulence behaviors in compressible boundary layers. Chin. Phys. Lett. 28 (6), 064702.Google Scholar
Linn, J. & Kloker, M. J. 2008 Numerical investigations of film cooling. In RESPACE – Key Technologies for Resuable Space Systems (ed. Gülhan, A.), NNFM 98, pp. 151169. Springer.Google Scholar
Linn, J. & Kloker, M. J. 2011 Effects of wall-temperature conditions on effusion cooling in a supersonic boundary layer. AIAA J. 49 (2), 299307.Google Scholar
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140 (2), 233258.CrossRefGoogle Scholar
Maeder, T., Adams, N. A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech. 429, 187216.Google Scholar
Maekawa, H., Watanabe, D., Ozaki, K. & Takami, H. 2007 Direct numerical simulation of a spatially evolving supersonic transition/turbulent boundary layer. In Proceedings of 5th International Symposium on Turbulence and Shear Flow Phenomena TSFP-5 (ed. Friedrich, R., Adams, N. A., Eaton, J. K., Humphrey, J. A. C., Kasagi, N. & Leschziner, M. A.), vol. 1, pp. 301306.Google Scholar
Maise, G. & McDonald, H. 1968 Mixing length and kinematic eddy viscosity in a compressible boundary layer. AIAA J. 6, 7380.Google Scholar
Martin, M. P.2004 DNS of hypersonic turbulent boundary layers. AIAA Paper 2004-2337.CrossRefGoogle Scholar
Martin, M. P. 2007 Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.CrossRefGoogle Scholar
Mayer, C. S. J., Von Terzi, D. A. & Fasel, H. F. 2011 Direct numerical simulation of complete transition to turbulence via oblique breakdown at Mach 3. J. Fluid Mech. 674, 542.Google Scholar
Monaghan, R. J.1955 On the behaviour of boundary layers at supersonic speeds. IAS Preprint No. 557.Google Scholar
Morkovin, M. V. 1961 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence (ed. Favre, A.), pp. 367380. CNRS.Google Scholar
Österlund, J. M.1999 Experimental studies of zero pressure-gradient turbulent boundary layer flow. PhD thesis, Mekanik.Google Scholar
Pirozzoli, S. 2012 On the size of the energy-containing eddies in the outer turbulent wall layer. J. Fluid Mech. 702, 521532.Google Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120168.Google Scholar
Pirozzoli, S. & Bernardini, M. 2013 Probing high-Reynolds-number effects in numerical boundary layers. Phys. Fluids 25 (2), 021704.Google Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2008 Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J. Fluid Mech. 613, 205231.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Grasso, F. 2010 Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J. Fluid Mech. 657, 361393.Google Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2.25. Phys. Fluids 16 (3), 530545.Google Scholar
Poggie, J., Bisek, N. J. & Gosse, R. 2015 Resolution effects in compressible, turbulent boundary layer simulations. Comput. Fluids 120C, 5769.CrossRefGoogle Scholar
Pohlhausen, K. 1921 Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht. Z. Angew. Math. Mech. 1, 252268.Google Scholar
Rai, M. M., Gatski, T. B. & Erlebacher, G. 1995 Direct simulation of spatially evolving compressible turbulent boundary layers. AIAA Paper 95-0583.Google Scholar
Ringuette, M. J., Wu, M. & Martin, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.Google Scholar
Rubesin, M. W. & Johnson, H. A. 1949 A critical review of skin-friction and heat-transfer solutions of the laminar boundary layer of a flat plate. Trans. ASME 71 (4), 383388.Google Scholar
Sagaut, P., Garnier, E., Tromeur, E., Larcheveque, L. & Labourasse, E. 2004 Turbulent inflow conditions for large-eddy-simulation of compressible wall-bounded flows. AIAA J. 42 (3), 469477.Google Scholar
Sandham, N. D., Yao, Y.-F. & Lawal, A. A. 2003 Large-eddy simulation of transonic turbulent flow over a bump. Intl J. Heat Fluid Flow 24 (4), 584595.Google Scholar
Schlatter, P., Li, Q., Brethouwer, G., Johansson, A. V. & Henningson, D. S. 2010 Simulations of spatially evolving turbulent boundary layers up to Re 𝜃 = 4300. Intl J. Heat Fluid Flow 31 (3), 251261.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.Google Scholar
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J. H. M., Johansson, A. V., Alfredsson, P. H. & Henningson, D. S. 2009 Turbulent boundary layers up to Re 𝜃 = 2500 studied through simulation and experiment. Phys. Fluids 21 (5), 051702.CrossRefGoogle Scholar
Schmidt, O. T.2014 Numerical investigations of instability and transition in streamwise corner-flows. PhD thesis, University of Stuttgart.Google Scholar
Simens, M. P., Jiménez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228 (11), 42184231.Google Scholar
Smith, R. W.1994 Effect of Reynolds number on the structure of turbulent boundary layers. PhD thesis.Google Scholar
Smits, A. J. & Dussauge, J.-P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer Science & Business Media.Google Scholar
Smits, A. J., Matheson, N. & Joubert, P. N. 1983 Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J. Ship Res. 27 (3), 147157.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re 𝜃 = 1410. J. Fluid Mech. 187, 6198.Google Scholar
Spalart, P. R. & Strelets, M. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.Google Scholar
Spalart, P. R., Strelets, M. & Travin, A. 2006 Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Intl J. Heat Fluid Flow 27 (5), 902910.CrossRefGoogle Scholar
Spalding, D. B. 1961 A single formula for the law of the wall. Trans. ASME J. Appl. Mech. 28 (3), 455458.Google Scholar
Spina, E. F., Smits, A. J. & Robinson, S. K. 1994 The physics of supersonic turbulent boundary layers. Annu. Rev. Fluid Mech. 26 (1), 287319.Google Scholar
Stiegler, L.2017 Numerische Untersuchungen einer turbulenten Einströmrandbedingung (digital filtering) bei unterschiedlichen Reynoldszahlen. Master’s thesis, University of Stuttgart.Google Scholar
Stolz, S. & Adams, N. 2003 Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys. Fluids 15 (8), 23982412.CrossRefGoogle Scholar
Touber, E.2010 Unsteadiness in shock-wave/boundary-layer interactions. PhD thesis, University of Southampton.Google Scholar
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.Google Scholar
Urbin, G. & Knight, D. 2001 Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J. 39 (7), 12881295.Google Scholar
Van Driest, E. R. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18 (3), 145160.Google Scholar
Van Driest, E. R. 1956 The problem of aerodynamic heating. Aeronaut. Engng Rev. 15 (10), 2641.Google Scholar
de Villiers, E.2006 The potential of large eddy simulation for the modeling of wall bounded flows. PhD thesis, Imperial College of Science, Technology and Medicine (Department of Mechanical Engineering), University of London.Google Scholar
Visbal, M. R. & Gaitonde, D. V. 2002 On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155185.Google Scholar
Wenzel, C., Selent, B., Kloker, M. J. & Rist, U.2017 DNS of compressible turbulent boundary layers at varying subsonic Mach numbers. AIAA Paper 2017-3116.Google Scholar
White, F. M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill.Google Scholar
Xu, S. & Martin, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16 (7), 26232639.CrossRefGoogle Scholar
Young, A. D. 1953 Modern Developments in Fluid Dynamics – High Speed Flow. Oxford University Press.Google Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F., Li, X.-L. & She, Z.-S. 2012 Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers. Phys. Rev. Lett. 109, 054502.Google Scholar
Zhang, Y.-S., Bi, W.-T., Hussain, F. & She, Z.-S. 2014 A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J. Fluid Mech. 739, 392420.Google Scholar