Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T00:29:17.706Z Has data issue: false hasContentIssue false

Direct simulation of the stably stratified turbulent Ekman layer

Published online by Cambridge University Press:  26 April 2006

G. N. Coleman
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford. CA 94305, USA Present address: NASA Ames Research Center, Moffett Field, CA 94035, USA.
J. H. Ferziger
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford. CA 94305, USA
P. R. Spalart
Affiliation:
NASA Ames Research Center, Moffett Field, CA 94035. USA Present address: Boeing Commercial Airplane Group, PO Box 3707, Seattle, WA 98124, USA.

Abstract

The three-dimensional time-dependent turbulent flow in the stably stratified Ekman layer over a smooth surface is computed numerically by directly solving the Navier–Stokes equations, using the Boussinesq approximation to account for buoyancy effects. All relevant scales of motion are included in the simulation so that no turbulence model is needed. The Ekman layer is an idealization of the Earth's boundary layer and provides information concerning atmospheric turbulence models. We find that, when non-dimensionalized according to Nieuwstadt's local scaling scheme, some of the simulation data agree very well with atmospheric measurements. The results also suggest that Brost & Wyngaard's ‘constant Froude number’ and Hunt's ‘shearing length’ stable layer models for the dissipation rate of turbulent kinetic energy are both valid, when Reynolds number effects are accounted for. Simple gradient closures for the temperature variance and heat flux demonstrate the same variation with Richardson number as in Mason & Derbyshire's large-eddy simulation (LES) study, implying both that the models are relatively insensitive to Reynolds number and that local scaling should work well when applied to the stable atmospheric layer. In general we find good agreement between the direct numerical simulation (DNS) results reported here and Mason & Derbyshire's LES results.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun A. 1972 Handbook of Mathematical Functions. National Bureau of Standards.
Blackadar A. K. 1957 Boundary layer wind maxima and their significance for the growth of the nocturnal inversion. Bull. Am. Met. Soc. 38, 283290.Google Scholar
Bradshaw P. 1967 ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30, 241258.Google Scholar
Bradshaw P. 1973 Effects of streamline curvature on turbulent flow. AGARD-AG-169.
Brost, R. A. & Wyngaard J. C. 1978 A model study of the stably stratified planetary boundary layer. J. Atmos. Sci. 35, 14271440.Google Scholar
Businger J. A. 1982 Equations and concepts. In Atmospheric Turbulence and Air Pollution Modelling (ed. F. T. M. Nieuwstadt & H. Van Dop), Chap. 1. D. Reidel.
Coleman G. N., Ferziger, J. H. & Spalart P. R. 1990a A numerical study of the turbulent Ekman layer. J. Fluid Mech. 213, 313348 (referred to herein as CFSa).Google Scholar
Coleman G. N., Ferziger, J. H. & Spalart P. R. 1990b A numerical study of the stratified turbulent Ekman layer. Dept. of Mech. Engng, Stanford University, Thermosciences Div. Rep. TF-48 (referred to herein as CFSb).Google Scholar
Derbyshire S. H. 1990 Nieuwstadt's stable boundary layer revisited. Q. J. R. Met. Soc. 116, 127158.Google Scholar
Ekman V. W. 1905 On the influence of the Earth's rotation on ocean-currents. Arkiv Matematic, Astronomi Fysik. 2 (11), 152.Google Scholar
Fitzjarrald D. E. 1979 On using a simplified turbulence model to calculate eddy diffusivities. J. Atmos. Sci. 36, 18171820.Google Scholar
Fleagle, R. G. & Businger J. A. 1980 An Introduction to Atmospheric Physics. Academic.
Garratt J. R. 1982 Observations in the nocturnal boundary layer. Boundary-Layer Met. 22, 2148.Google Scholar
Gerz T., Schumann, U. & Elghobashi S. E. 1989 Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200, 563594.Google Scholar
Gill A. E. 1982 Atmospheric-Ocean Dynamics. Academic.
Gottlieb, D. & Orszag S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics.
Gregg M. C. 1987 Diapycnal mixing in the thermocline: a review. J. Geophys. Res. 92, 52495286.Google Scholar
Holt S. E., Koseff, J. R. & Ferziger J. H. 1992 A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499539.Google Scholar
Holton J. R. 1979 An Introduction to Dynamic Meteorology. Academic.
Hunt J. C. R. 1985 Diffusion in the stably stratified atmospheric boundary layer. J. Clim. Appl. Met. 24, 11871195.Google Scholar
Hunt J. C. R., Kaimal, J. C. & Gaynor J. E. 1985 Some observations of turbulence structure in stable layers Q. J. R. Met. Soc. 111, 793815.Google Scholar
Hunt J. C. R., Spalart, P. R. & Mansour N. N. 1987 A general form for the dissipation length scale in turbulent shear flows. Proc. 1st. Summer Prog. NASA/Stanford Center for Turbulence Research.Google Scholar
Hunt J. C. R., Stretch, D. D. & Britter R. E. 1988 Length scales in stably stratified turbulent flows and their use in turbulence models. In Stably Stratified Flow and Dense Gas Dispersion (ed. J. S. Puttock). Clarendon.
Kays, W. M. & Crawford M. E. 1980 Convective Heat and Mass Transfer. 2nd edn. McGraw-Hill.
Kim, J. & Moin P. 1989 Transport of passive scalars in a turbulent channel flow. In Turbulent Shear Flows 6 (ed. J.-C. André, J. Cousteix, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw). Springer.
Kim J., Moin, P. & Moser R. D. 1987 Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Kraichnan R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.Google Scholar
Lee M. J., Kim, J. & Moin P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.Google Scholar
LeMone M. A. 1973 The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci. 30, 10771091.Google Scholar
Lin, J.-T. & Pao Y.-H. 1979 Wakes in stratified fluids. Ann. Rev. Fluid Mech. 11, 317338.Google Scholar
Mahrt L., Heald R. C., Lenschow, D. H. & Stankov B. B. 1979 An observational study of the structure of the nocturnal boundary layer. Boundary-Layer Met. 17, 247264.Google Scholar
Mason, P. J. & Derbyshire S. H. 1990 Large eddy simulation of the stably-stratified atmospheric boundary layer Boundary-Layer Met. 53, 117162.Google Scholar
Métais, O. & Herring J. R. 1989 Numerical simulations of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202, 117148.Google Scholar
Nieuwstadt F. T. M. 1984 The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41, 22022216.Google Scholar
Nieuwstadt F. T. M. 1985 A model for the stationary, stable boundary layer. In Turbulence and Diffusion in Stable Environments (ed. J. C. R. Hunt). Clarendon.
Ozmidov R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izv. Atoms. Ocean. Phys. 8, 853860.Google Scholar
Perry A. E., Henbest, S. & Chong M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.Google Scholar
Perry A. E., Lim, K. L. & Henbest S. M. 1985 A spectral analysis of smooth flat-plate boundary layers. Proc. 5th Symp. on Turbulent Shear Flows, Ithaca, NY, August 7–9, 1985.Google Scholar
Riley J. J., Metcalfe, R. W. & Weissman M. A. 1981 Direct numerical simulations of homogeneous turbulence in density-stratified fluids. Proc. AIP Conf. Non-Linear Properties of Internal Waves (ed. B. J. West), vol. 76, pp. 79112.
Rogers M. M., Mansour, N. N. & Reynolds W. C. 1989 An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech. 203, 77101.Google Scholar
Schmidt, H. & Schumann, U. 1989 Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511562.Google Scholar
Schumann U. 1987 The countergradient heat flux in turbulent stratified flows. Nucl. Engng Des. 100, 255262.Google Scholar
Sorbjan Z. 1986 On similarity in the atmospheric boundary layer. Boundary-Layer Met. 34, 377397.Google Scholar
Spalart P. R. 1988 Direct simulation of a turbulent boundary layer up to R = 1410. J. Fluid Mech. 187, 6198.Google Scholar
Spalart P. R. 1989 Theoretical and numerical study of a three-dimensional turbulent boundary layer. J. Fluid Mech. 205, 319340.Google Scholar
Spalart P. R., Moser, R. D. & Rogers M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comp. Phys. 96, 297324.Google Scholar
Stillinger D. C., Helland, K. N. & Van Atta, C. W. 1983 Experiments on the transition of homogeneous turbulence to internal waves in a stratified fluid. J. Fluid Mech. 131, 91122.Google Scholar
Stull R. B. 1988 An Introduction to Boundary Layer Meteorology. Kluwer.
Thorpe, A. J. & Guymer T. H. 1977 The nocturnal jet. Q. J. R. Met. Soc. 103, 633653.Google Scholar
Townsend A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Turner J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
Wyngaard J. C. 1973 On surface layer similarity. In Workshop on Micrometeorology (ed. D. A. Haugen), Chap. 3. American Meteorological Society.
Wyngaard J. C. 1982 Boundary layer modeling. In Atmospheric Turbulence and Air Pollution Modelling (ed. F. T. M. Nieuwstadt & H. Van Dop), Chap. 1. D. Reidel.
Wyngaard J. C. 1983 Lectures on the planetary boundary layer. In Mesoscale Meteorology – Theories, Observations and Models (ed. D. K. Lilly & T. Gal-Chen). D. Reidel.
Wyngaard J. C. 1985 Structure of the planetary boundary layer and implications for its modeling. J. Clim. Appl. Met. 24, 11311142.Google Scholar
Wyngaard J. C. 1992 Atmospheric turbulence. Ann. Rev. Fluid Mech. 24, 205233.Google Scholar
Zilitinkevich S. S. 1972 On the determination of the height of the Ekman boundary layer. Boundary-Layer Met. 3, 141145.Google Scholar
Zilitinkevich S. S. 1975 Resistance laws and prediction equations for the depth of the planetary boundary layer. J. Atmos. Sci. 32, 743752.Google Scholar