Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T02:54:37.749Z Has data issue: false hasContentIssue false

Direct numerical simulation of Taylor–Couette flow with vertical asymmetric rough walls

Published online by Cambridge University Press:  16 November 2023

Fan Xu
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, Beijing 100190, PR China
Jinghong Su
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Bin Lan
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, Beijing 100190, PR China
Peng Zhao
Affiliation:
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, Beijing 100190, PR China School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
Yurong He*
Affiliation:
School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
Chao Sun*
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
Junwu Wang*
Affiliation:
State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, P. O. Box 353, Beijing 100190, PR China School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected], [email protected]

Abstract

Direct numerical simulations are performed to explore the effects of the rotating direction of the vertically asymmetric rough wall on the transport properties of Taylor–Couette (TC) flow, up to a Taylor number of ${Ta} = 2.39\times 10^{7}$. It is shown that, compared with the smooth wall, the rough wall with vertical asymmetric strips can enhance the dimensionless torque ${Nu}_{\omega }$. More importantly, at high Ta, clockwise rotation of the inner rough wall (where the fluid is sheared by the steeper slope side of the strips) results in a significantly greater torque enhancement compared to counter-clockwise rotation (where the fluid is sheared by the smaller slope side of the strips), due to the larger convective contribution to the angular velocity flux. However, the rotating direction has a negligible effect on the torque at low Ta. The larger torque enhancement caused by the clockwise rotation of the vertically asymmetric rough wall at high Ta is then explained by the stronger coupling between the rough wall and the bulk, attributed to the larger biased azimuthal velocity towards the rough wall at the mid-gap of the TC system, the increased turbulence intensity manifested by larger Reynolds stress and a thinner boundary layer, and the more significant contribution of the pressure force on the surface of the rough wall to the torque.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakhuis, D., Ezeta, R., Berghout, P., Bullee, P.A., Tai, D., Chung, D., Verzicco, R., Lohse, D., Huisman, S.G. & Sun, C. 2020 Controlling secondary flow in Taylor–Couette turbulence through spanwise-varying roughness. J. Fluid Mech. 883, A15.CrossRefGoogle Scholar
Berghout, P., Bullee, P.A., Fuchs, T., Scharnowski, S., Kähler, C.J., Chung, D., Lohse, D. & Huisman, S.G. 2021 Characterizing the turbulent drag properties of rough surfaces with a Taylor–Couette set-up. J. Fluid Mech. 919, A45.CrossRefGoogle Scholar
Berghout, P., Zhu, X., Chung, D., Verzicco, R., Stevens, R.J.A.M. & Lohse, D. 2019 Direct numerical simulations of Taylor–Couette turbulence: the effects of sand grain roughness. J. Fluid Mech. 873, 260286.CrossRefGoogle Scholar
Brauckmann, H.J. & Eckhardt, B. 2013 Direct numerical simulations of local and global torque in Taylor–Couette flow up to $Re= 30\,000$. J. Fluid Mech. 718, 398427.CrossRefGoogle Scholar
Cadot, O., Couder, Y., Daerr, A., Douady, S. & Tsinober, A. 1997 Energy injection in closed turbulent flows: stirring through boundary layers versus inertial stirring. Phys. Rev. E 56 (1), 427433.CrossRefGoogle Scholar
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2018 Secondary motion in turbulent pipe flow with three-dimensional roughness. J. Fluid Mech. 854, 533.CrossRefGoogle Scholar
Chung, D., Hutchins, N., Schultz, M.P. & Flack, K.A. 2021 Predicting the drag of rough surfaces. Annu. Rev. Fluid Mech. 53, 439471.CrossRefGoogle Scholar
Dong, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.CrossRefGoogle Scholar
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.CrossRefGoogle Scholar
Flack, K.A. & Schultz, M.P. 2014 Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26 (10), 101305.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High–Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Jelly, T.O., Ramani, A., Nugroho, B., Hutchins, N. & Busse, A. 2022 Impact of spanwise effective slope upon rough-wall turbulent channel flow. J. Fluid Mech. 951, A1.CrossRefGoogle Scholar
Lee, S.-H., Chung, H.-T., Park, C.-W. & Kim, H.-B. 2009 Experimental investigation of the effect of axial wall slits on Taylor–Couette flow. Fluid. Dyn. Res. 41 (4), 045502.CrossRefGoogle Scholar
Ma, G.-Z., Xu, C.-X., Sung, H.J. & Huang, W.-X. 2020 Scaling of rough-wall turbulence by the roughness height and steepness. J. Fluid Mech. 900, R7.CrossRefGoogle Scholar
Modesti, D., Endrikat, S., Hutchins, N. & Chung, D. 2021 Dispersive stresses in turbulent flow over riblets. J. Fluid Mech. 917, A55.CrossRefGoogle Scholar
Motozawa, M., Ito, T., Iwamoto, K., Kawashima, H., Ando, H., Senda, T., Tsuji, Y. & Kawaguchi, Y. 2013 Experimental investigations on frictional resistance and velocity distribution of rough wall with regularly distributed triangular ribs. Intl J. Heat Fluid Flow 41, 112121.CrossRefGoogle Scholar
Ng, J.H., Jaiman, R.K. & Lim, T.T. 2018 Interaction dynamics of longitudinal corrugations in Taylor–Couette flows. Phys. Fluids 30 (9), 093601.CrossRefGoogle Scholar
Nikuradse, J. 1933 Stromungsgesetze in rauhen Rohren. Forschungsheft Arb. Ing.-Wes. 361.Google Scholar
Ostilla-Mónico, R., Stevens, R.J.A.M., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.CrossRefGoogle Scholar
Ostilla-Mónico, R., Van Der Poel, E.P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 a Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.CrossRefGoogle Scholar
Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D. 2014 b Turbulence decay towards the linearly stable regime of Taylor–Couette flow. J. Fluid Mech. 748, R3.CrossRefGoogle Scholar
Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2015 Effects of the computational domain size on direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27 (2), 025110.CrossRefGoogle Scholar
Pirro, D. & Quadrio, M. 2008 Direct numerical simulation of turbulent Taylor–Couette flow. Eur. J. Mech. (B/Fluids) 27 (5), 552566.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Razzak, Md.A., Cheong, K.B. & Lua, K.B. 2020 Numerical study of Taylor–Couette flow with longitudinal corrugated surface. Phys. Fluids 32 (5), 053606.CrossRefGoogle Scholar
Rouhi, A., Chung, D. & Hutchins, N. 2019 Direct numerical simulation of open-channel flow over smooth-to-rough and rough-to-smooth step changes. J. Fluid Mech. 866, 450486.CrossRefGoogle Scholar
Shen, Y., Tong, P. & Xia, K.-Q. 1996 Turbulent convection over rough surfaces. Phys. Rev. Lett. 76 (6), 908.CrossRefGoogle ScholarPubMed
Sodjavi, K., Ravelet, F. & Bakir, F. 2018 Effects of axial rectangular groove on turbulent Taylor–Couette flow from analysis of experimental data. Exp. Therm. Fluid Sci. 97, 270278.CrossRefGoogle Scholar
Stringano, G., Pascazio, G. & Verzicco, R. 2006 Turbulent thermal convection over grooved plates. J. Fluid Mech. 557, 307336.CrossRefGoogle Scholar
Van den Berg, T.H, Doering, C.R., Lohse, D. & Lathrop, D.P. 2003 Smooth and rough boundaries in turbulent Taylor–Couette flow. Phys. Rev. E 68 (3), 036307.CrossRefGoogle ScholarPubMed
Verschoof, R.A., Zhu, X., Bakhuis, D., Huisman, S.G., Verzicco, R., Sun, C. & Lohse, D. 2018 Rough-wall turbulent Taylor–Couette flow: the effect of the rib height. Eur. Phys. J. E 41 (10), 19.CrossRefGoogle ScholarPubMed
White, F.M. 2011 Fluid Mechanics. McGraw-Hill.Google Scholar
Xu, B., Li, H., Liu, X., Xiang, Y., Lv, P., Tan, X., Zhao, Y., Sun, C. & Duan, H. 2023 Effect of micro-grooves on drag reduction in Taylor–Couette flow. Phys. Fluids 35 (4), 043608.Google Scholar
Xu, F., Zhao, P., Sun, C., He, Y. & Wang, J. 2022 Direct numerical simulation of Taylor–Couette flow: regime-dependent role of axial walls. Chem. Engng Sci. 263, 118075.CrossRefGoogle Scholar
Zhao, P., Xu, J., Ge, W. & Wang, J. 2020 a A CFD-DEM-IBM method for Cartesian grid simulation of gas-solid flow in complex geometries. Chem. Engng J. 389, 124343.CrossRefGoogle Scholar
Zhao, P., Xu, J., Liu, X, Ge, W. & Wang, J. 2020 b A computational fluid dynamics-discrete element-immersed boundary method for Cartesian grid simulation of heat transfer in compressible gas–solid flow with complex geometries. Phys. Fluids 32 (10), 103306.CrossRefGoogle Scholar
Zhu, B., Ji, Z., Lou, Z. & Qian, P. 2018 a Torque scaling in small-gap Taylor–Couette flow with smooth or grooved wall. Phys. Rev. E 97 (3), 033110.CrossRefGoogle ScholarPubMed
Zhu, X., Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2016 Direct numerical simulation of Taylor–Couette flow with grooved walls: torque scaling and flow structure. J. Fluid Mech. 794, 746774.CrossRefGoogle Scholar
Zhu, X., Verschoof, R.A., Bakhuis, D., Huisman, S.G., Verzicco, R., Sun, C. & Lohse, D. 2018 b Wall roughness induces asymptotic ultimate turbulence. Nat. Phys. 14 (4), 417423.CrossRefGoogle Scholar
Zhu, X., Verzicco, R. & Lohse, D. 2017 Disentangling the origins of torque enhancement through wall roughness in Taylor–Couette turbulence. J. Fluid Mech. 812, 279293.CrossRefGoogle Scholar