Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T05:46:52.407Z Has data issue: false hasContentIssue false

Direct numerical simulation of passive scalar transport in transverse jets

Published online by Cambridge University Press:  25 February 2008

SUMAN MUPPIDI
Affiliation:
Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
KRISHNAN MAHESH
Affiliation:
Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

Direct numerical simulation is used to study passive scalar transport and mixing in a round turbulent jet, in a laminar crossflow. The ratio of the jet velocity to that of the crossflow is 5.7, the Schmidt number of the scalar is 1.49, and the jet-exit Reynolds number is 5000. The scalar field is used to compute entrainment of the crossflow fluid by the jet. It is shown that the bulk of this entrainment occurs on the downstream side of the jet. Also, the transverse jet entrains more fluid than a regular jet even when the jet has not yet bent into the crossflow. The transverse jet's enhanced entrainment is explained in terms of the pressure field around the jet. The acceleration imposed by the crossflow deforms the jet cross-section on the downstream side, which sets up a pressure gradient that drives downstream crossflow fluid toward the jet. The simulation results are used to comment on the applicability of the gradient–diffusion hypothesis to compute passive scalar mixing in this flow field. Computed values of the eddy diffusivity show significant scatter, and a pronounced anisotropy. The near field also exhibits counter gradient diffusion.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acharya, S., Tyagi, M. & Hoda, A. 2001 Flow and heat transfer predictions for film-cooling. Ann. NY Acad. Sci. 934, 110125.CrossRefGoogle ScholarPubMed
Andreopoulos, J. & Rodi, W. 1984 Experimental investigation of jets in a crossflow. J. Fluid Mech. 138, 93127.CrossRefGoogle Scholar
Babu, P. & Mahesh, K. 2004 Upstream entrainment in numerical simulation of spatially evolving round jets. Phys. Fluids 16, 36993705.CrossRefGoogle Scholar
Bray, K. N. C., Libby, P. A., Masuya, G. & Moss, J. B. 1981 Turbulence production in premixed turbulent flames. Combust. Sci. Technol. 25, 127140.CrossRefGoogle Scholar
Broadwell, J. E. & Breidenthal, R. E. 1984 Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405412.CrossRefGoogle Scholar
Chochua, G., Shyy, W., Thakur, S., Brankovic, A., Lienau, K., Porter, L. & Lischinsky, D. 2000 A computational and experimental investigation of turbulent jet and crossflow interaction. Numer. Heat Transfer A 38, 557572.Google Scholar
Dowling, D. R. & Dimotakis, P. E. 1990 Similarity of the concentration field of gas-phase turbulent jets. J. Fluid Mech. 218, 109141.Google Scholar
Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, T. M. 1994 Fully developed turbulent pipe flow: a comparison between numerical simulation and experiment. J. Fluid Mech. 268, 175209.CrossRefGoogle Scholar
Fearn, R. L. & Weston, R. P. 1974 Vorticity associated with a jet in crossflow. AIAA J. 12, 16661671.Google Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.Google Scholar
Hasselbrink, E. F. & Mungal, M. G. 2001 Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets. J. Fluid Mech. 443, 125.CrossRefGoogle Scholar
Herrmann, M., Blanquart, G. & Raman, V. 2004 Flux corrected finite-volume scheme for preserving scalar boundedness in large-eddy simulations. In Annu. Res. Briefs 2004, pp.7585. Center for Turbulence Research, Stanford, CA.Google Scholar
Karagozian, A. R. 1986 An analytical model for the vorticity associated with a transverse jet. AIAA J. 24, 429436.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on turbulent jet in a crossflow. AIAA J. 10, 14251429.CrossRefGoogle Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Krothapalli, A., Lourenco, L. & Buchlin, J. M. 1990 Separated flow upstream of a jet in a crossflow. AIAA J. 28, 414420.CrossRefGoogle Scholar
Libby, P. A. & Bray, K. N. C. 1981 Countergradient diffusion in premixed turbulent flames. AIAA J. 19, 205213.Google Scholar
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 215240.Google Scholar
Margason, R. J. 1993 Fifty years of jet in crossflow research. In AGARD Symp. on a Jet in Cross Flow, Winchester, UK. AGARD CP 534.Google Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid. Mech. 530, 81100.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2006 A two-dimensional model problem to explain CVP formation in a transverse jet. Phys. Fluids 18, 085103.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2007 Direct numerical simulation of round turbulent jets in crossflow. J. Fluid. Mech. 574, 5984.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid. Mech. 11, 2132.CrossRefGoogle Scholar
Schlichting, H. T. 1968 Boundary Layer Theory. McGraw-Hill.Google Scholar
Schluter, J. U. & Schonfeld, T. 2000 LES of jets in crossflow and its application to a gas turbine burner. Flow Turbulence Combust. 65, 177203.Google Scholar
Seki, Y. & Kawamura, H. 2004 DNS of turbulent heat transfer in a channel flow with a streamwisely varying thermal boundary condition. 15th Australasian Fluid Mech. Conf. The University of Sydney, Sydney, Australia.Google Scholar
Shan, J. W. & Dimotakis, P. E. 2006 Reynolds-number effects and anisotropy in transverse-jet mixing. J. Fluid. Mech. 566, 4796.CrossRefGoogle Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Sreenivasan, K. R., Tavoularis, S. & Corrsin, S. 1982 A Test of Gradient Transport and its Generalizations. Turbulent Shear Flows, vol. 3, pp. 96–112. Springer.CrossRefGoogle Scholar
Su, L. K. & Mungal, M. G. 2004 Simultaneous measurement of scalar and velocity field evolution in turbulent crossflowing jets J. Fluid Mech. 513, 145.Google Scholar
Tagawa, M., Matsubara, F. & Ohta, Y. 2002 Combust. Flame 129, 151163.Google Scholar
Veynante, D., Trouve, A., Bray, K. N. C. & Mantel, T. 1997 Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263293.CrossRefGoogle Scholar
Yuan, L. L. & Street, R. L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10, 23232335.Google Scholar
Yuan, L. L., Street, R. L. & Ferziger, J. H. 1999 Large-eddy simulations of a round jet in crossflow. J. Fluid Mech. 379, 71104.CrossRefGoogle Scholar