Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-06T21:39:04.511Z Has data issue: true hasContentIssue false

Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments

Published online by Cambridge University Press:  14 October 2021

M. Pino Martin*
Affiliation:
Mechanical and Aerospace Engineering Department, Princeton University, Princeton, NJ 08544, USA

Abstract

A systematic procedure for initializing supersonic and hypersonic turbulent boundary layers at controlled Mach number and Reynolds number conditions is described. The initialization is done by locally transforming a true direct numerical simulation flow field, and results in a nearly realistic initial magnitude of turbulent fluctuations, turbulence structure and energy distribution. The time scales necessary to forget the initial condition are studied. The experimental conditions of previous studies are simulated. The magnitude of velocity and temperature fluctuations, as well as the turbulent shear stresses given by the direct numerical simulations are in agreement with the experimental data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, N. 2000 Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Re θ=1685. J. Fluid Mech. 420, 4783.Google Scholar
Candler, G., Wright, W. & McDonald, J. 1994 Data-parallel lower-upper relaxation method for reacting flows. AIAA J. 32, 23802386.Google Scholar
Cebeci, T. & Smith, A. M. O. 1974 Analysis of Turbulent Boundary Layers. Academic.Google Scholar
Debiève, J. 1983 Etude d'lune interaction turbulence onde de choc. PhD thesis, Thèse Université d'Aix Marseille II.Google Scholar
Debiève, J., Gouin, H. & Gaviglio, J. 1981 Momentum and temperature fluxes in a shock wave-turbulence interaction. Proc. ICHMT/IUTAM Symp. on the Structure of Turbulence and Heat and Mass Transfer, Dubrovnik.Google Scholar
Debiève, J.-F., Dupont, P., Smith, D. R. & Smits, A. J. 1997 Supersonic turbulent boundary layer subjected to step changes in wall temperature. AIAA J. 35, 5157.CrossRefGoogle Scholar
Dussauge, J. P. 1981 Evolution de transferts turbulents dans une détente rapide, en écoulement supersonic. Doctorat es Sciences Physiques, I.M.S.T., Université d'Aix Marseille II.Google Scholar
Eléna, M. & Lacharme, J. 1988 Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer. J. Méc. Théor. Appl. 7, 175190.Google Scholar
Eléna, M., Lacharme, J. & Gaviglio, J. 1985 Comparison of hot-wire and laser Doppler anemometry methods in supersonic turbulent boundary layers. In Proc. Intl Symp. on Laser Anemometry (ed. Dybb, A. & Pfund, P. A.). ASME.Google Scholar
Fernholz, H., Finley, P., Dussauge, J. & Smits, A. J. 1989 A survey of measurements and measuring techniques in rapidly distorted compressible turbulent boundary layers. AGAR Dograph 315.Google Scholar
Fulachier, L. 1972 ‘Contribution à l'étude des analogies des champs dynamiques et thermiques dans une couche limite turbulente. Effect de l'aspiration", Doctorat es Sciences Physiques, I.M.S.T., Université de Provence (Aix-Marseille).Google Scholar
Gaviglio, J. 1987 Reynolds analogies and experimental study of heat transfer in the supersonic boundary layer. Intl J. Heat Mass Transfer 30, 911926.CrossRefGoogle Scholar
Guarini, S., Moser, R., Shariff, K. & Wray, A. 2000 Direct numerical simulation of supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Johnson, D. & Rose, W. 1975 Laser velocimetry and hot-wire anemometer comparison in a supersonic boundary layer. AIAA J. 13, 512515.CrossRefGoogle Scholar
Klebanoff, P. 1955 Characteristics of turbulence in a boundary layer with zero pressure gradient. NASA Rep. 1247.Google Scholar
Martin, M. 2004 DNS of hypersonic turbulent boundary layers. AIAA Paper 2004-2337.Google Scholar
Martin, M. & Candler, G. 2000 DNS of a Mach 4 boundary layer with chemical reactions. AIAA Paper 2000-0399.Google Scholar
Martin, M. & Candler, G. 2001 Temperature fluctuation scaling in reacting boundary layers. AIAA Paper 2001-2717.CrossRefGoogle Scholar
Martin, M. & Candler, G. 2006 A parallel implicit method for the direct numerical simulation of compressible flows. J. Comput. Phys. 215, 153171.CrossRefGoogle Scholar
Martin, M., Taylor, E., Wu, M. & Weirs, V. 2006 A bandwidth-optimized WENO scheme for the direct numerical simulation of compressible turbulence. J. Comput. Phys. (accepted).CrossRefGoogle Scholar
Morkovin, M. 1962 Effects of compressibility on turbulent flows. In Mèchanique de la Turbulence, pp. 367380. CNRS.Google Scholar
Robinson, S., Seegmiller, M. & Kussoy, M. 1983 Hot-wire and laser doppler anemometer measurements in a supersonic boundary layer. AIAA Paper 83-1723.CrossRefGoogle Scholar
Spalart, P. 1988 Direct numerical simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Van-Driest, E. 1956 Problem of aerodynamic heating. Aeronaut. Engng Rev. 15, 2641.Google Scholar
Weirs, V. & Candler, G. 1997 Optimization of weighted ENO schemes for DNS of compressible turbulence. AIAA Paper 97-1940. Also V.G. Weirs PhD Thesis, University of Minnesota, 1998.Google Scholar
Wright, M. 2003 DPLR and CFD and code. NASA Ames Research Center, Moffett Field, CA.Google Scholar
Wu, M. & Martin, M. 2004 Direct numerical simulation of shockwave/turbulent boundary layer interaction. AIAA Paper 2004-2145.CrossRefGoogle Scholar
Xu, S. & Martin, M. 2003 Assessment of inflow boundary conditions for compressible turbulent boundary layers. AIAA Paper 2003-3963.CrossRefGoogle Scholar
Xu, S. & Martin, M. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers Phys. Fluids. 16, 26232639.CrossRefGoogle Scholar