Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T12:00:29.644Z Has data issue: false hasContentIssue false

The development of weak waves in the steady two-dimensional flow of a gas with vibrational relaxation past a thin wedge

Published online by Cambridge University Press:  29 March 2006

R. P. Hornby
Affiliation:
Department of the Mechanics of Fluids, University of Manchester, England Present address: Department of Mechanical Engineering, University of Liverpool.
N. H. Johannesen
Affiliation:
Department of the Mechanics of Fluids, University of Manchester, England

Abstract

The method of characteristics is used to calculate the supersonic flow past a wedge of small angle with non-equilibrium effects. The wave decay and development distances are presented in a concise similarity form which permits accurate extrapolation to very weak waves. The numerical solutions are compared with shock-tube flows of CO2 and N2O.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhangu, J. K. 1966 Shock tube studies of vibrational relaxation in N2O. J. Fluid Mech. 25, 817.Google Scholar
Blythe, P. A. 1969 Non-linear wave propagation in a relaxing gas J. Fluid Mech. 37, 31.Google Scholar
Capiaux, R. & Washington, M. 1963 Non-equilibrium flow past a wedge A.I.A.A. J. 1, 650.Google Scholar
Dain, C. G. & Hodgson, J. P. 1975 The development of weak waves in the unsteady one-dimensional flow of a vibrationally relaxing gas ahead of an impulsively started piston J. Fluid Mech. 69, 129.CrossRefGoogle Scholar
Der, J. J. 1963 Theoretical studies of supersonic two-dimensional and axisymmetric non-equilibrium flow including calculations of flow through a nozzle. N.A.S.A. Tech. Rep. R-164.Google Scholar
Hodgson, J. P. & Johannesen, N. H. 1971 Real-gas effects in very weak shock waves and the structure of sonic bangs J. Fluid Mech. 50, 17.Google Scholar
Johannesen, N. H., Zienkiewicz, H. K., Blythe, P. A. & Gerrard, J. H. 1962 Experimental and theoretical analysis of vibrational relaxation regions in CO2. J. Fluid Mech. 13, 213.Google Scholar
Lighthill, M. J. 1956 Viscosity effects in sound waves of finite amplitude. In Surveys in Mechanics (ed. Batchelor & Davies), pp. 250351. Cambridge University Press.
Rees, T. 1968 Computer calculations of relaxation regions and equilibrium conditions for shock waves with tables for CO2 and N2O. Aero. Res. Counc. R. & M. no. 3472.Google Scholar
Sedney, R. 1970 The method of characteristics. In Non-equilibrium Flows (ed. Wegener), part 2, pp. 160225. Dekker.