Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T18:51:52.340Z Has data issue: false hasContentIssue false

Density fluctuation correlations in free turbulent binary mixing

Published online by Cambridge University Press:  26 April 2006

P. Chassaing
Affiliation:
Institut National Polytechnique, ENSEEIHT, 2 rue Camichel, 31000 Toulouse, France.
G. Harran
Affiliation:
Institut de Mécanique des Fluides, avenue du Professeur C. Soula, 31400 Toulouse, France.
L. Joly
Affiliation:
ENSICA, 49 avenue L. Blum 31056 Toulouse, France.

Abstract

This paper is devoted to the analysis of the turbulent mass flux and, more generally, of the density fluctuation correlation (d.f.c.) effects in variable-density fluid motion. The situation is restricted to the free turbulent binary mixing of an inhomogeneous round jet discharging into a quiescent atmosphere. Based on conventional (Reynolds) averaging, a ternary regrouping of the correlations occurring in the statistical averaging of the open equations is first introduced. Then an exact algebraic relationship between the d.f.c. terms and the second-order moments is demonstrated. Some consequences of this result on the global behaviour of variable-density jets are analytically discussed. The effects of the d.f.c. terms are shown to give a qualitative explanation of the influence of the ratio of the densities of the inlet jet and ambient fluid on the centerline decay rates of mean velocity and mass fraction, the entrainment rate and the restructuring of the jet. Finally, the sensitivity of second-order modelling to the d.f.c. terms is illustrated and it is suggested that such terms should be considered as independent variables in the closing procedure.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, G. N., Yakolevsky, D. V., Smirnova, I. P., Secundov, A. N. & Krasheninnikov, S. Yu. 1969 An investigation of turbulent jets of different gases in a general stream. Aeronaut. Acta. 18, 229240.Google Scholar
Bauer, P. T, Zumwalt, G. W. & Fila, L. J. 1968 A numerical method and an extension of the Korst jet mixing theory for multispecie turbulent jet mixing. AIAA Paper 68 (112), 6th Aerospace Sciences Meeting, New York.
Beguier, C., Dekeyser, I. & Launder, B. E. 1978 Ratio of scalar and velocity dissipation time scales in shear flow turbulence. Phys. Fluids A 21, 307310.Google Scholar
Birch, A. D., Brown, D. R., Dodson, M. G. & Thomas, J. R. 1978 The turbulent concentration field of a methane jet. J. Fluid Mech. 88, 431449.Google Scholar
Bogulawski, L. & Popiel, C. O. 1979 Flow structure of the free round jet in the initial region. J. Fluid Mech. 90, 531539.Google Scholar
Bradbury, L. J. S. 1965 The structure of a self-preserving turbulent plane jet. J. Fluid Mech. 23, 3164.Google Scholar
Bradbury, L. J. S. 1967 Simple expressions for the spread of turbulent jets. Aero. Q. 18, 133142.Google Scholar
Chassaing, P. 1977 Heat transfer from cylindrical anemometer probes in CO2-Air mixtures. Phys. Fluids 20, 12601262.Google Scholar
Chassaing, P. 1979 Melange turbulent de gaz inertes dans un jet de tube libre. Thèse Doc. Sciences 42, Inst. Nat. Poly, de Toulouse.
Chassaing, P. 1985 Une alternative à la formulation des équations du mouvement turbulent d'un fluide à masse volumique variable. J. Méc. Théo. Appl. 4, 375389.Google Scholar
Chassaing, P. & Herard, J. M. 1987 Second order modelling of a variable density turbulent mixing. Sixth Symp. on Turbulent Shear Flows., Toulouse, 17/8..
Chassaing, P. & Chibat, M. 1988 Second order modelling of a variable density mixing layer. Euromech. Coll. 237, Marseille, France.
Chen, C. J. & Rodi, W. 1976 A review of experimental dada of vertical turbulent buoyant jets. IIHM Rep. 193.
Chen, J. Y, Gouldin, F. C. & Lumley, J. L. 1987 Second-order modelling of a turbulent nonpremixed H2-Air jet flame with intermittency and conditional averaging. Combust. Sci. Tech. 53, 235257.Google Scholar
Corrsin, S. & Uberoi, M. S. 1949 Further experiments on flow and heat transfer in a heated turbulent air-jet. Further experiments on flow and heat transfer in a heated turbulent air-jet NACA TN.
Cousteix, J. & Aupoix, B. 1989 Three dimensional supersonic and hypersonic flows including separation. AGARD-FDP-VKI Special Course, pp. 153.
Donaldson, C. du P. & Gray, K. E. 1966 Theoretical and experimental investigation of the compressible free mixing of two dissimilar gases. AlAA J. 4, 20172025.Google Scholar
Dowling, D. R. & Dimotakis, P. E. 1990 Similarity of the concentration field of gas-phase turbulent jets. J. Fluid Mech. 218, 109141.Google Scholar
Driscoll, J. F, Schefer, R. W. & Dibble, R. W. 1982 Mass fluxes
measured in a turbulent nonpremixed flame
. Ninth Symp. on Combustion, pp. 477485. The Combustion Institute.Google Scholar
Favre, A. 1958 Equations statistiques des gaz turbulents. C.R. Acad. Sci. Paris 246, 25733216.Google Scholar
Favre, A. 1965a Equations des gaz turbulents compressibles. I Formes générales. J. Méc. 4, 361390.Google Scholar
Favre, A. 1965b Equations des gaz turbulents compressibles. II Méthode des vitesses moyennes; Méthode des vitesses macroscopiques pondérées par la masse volumique. J. Méc. 4, 390421.Google Scholar
Favre, A. 1971 Equations statistiques aux fluctuations d'entropie, de concentration, de rotationnel dans les ecoulements compressibles. C.R. Acad. Sci. Paris 273, 12891294.Google Scholar
Favre, A. 1975 Equations statistiques des fluides turbulents compressibles. Fifth Cong. Can. de Mec. Appl., New Brunswick Univ., pp. G3G34.Google Scholar
Favre, A. 1992 Equations statistiques des fluides à masse volumique variable en écoulements turbulents. Second Journées d'Etudes Ecoulements Turbulents Mane Volumique Variable, Orleans, France.
Florent, P. 1966 Etude analytique et expérimentale des zones non établies des jets subsoniques turbulents à symétrie de revolution débouchant dans une atmosphere initialement immobile. Thése Doct Etat. Univ. de Poitiers 60.
George, W. K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed W.K. George & R. Arndt), pp. 3973. Hemisphere.
Grandmaison, E. W., Rathgeber, D. E. & Becker, H. A. 1982 Some characteristics of concentration fluctuation in free turbulent jets. Can. J. Chem. Engng 60, 212219.Google Scholar
Ha Minh, H. & Chassaing, P. 1978 Restructuration d’écoulements turbulents. J. Méc. 17, 360386.Google Scholar
Ha Minh, H., Launder, B. E. & Mac Innes, H. 1981 A new approach to the analysis of turbulent mixing in variable density flows. 3rd Symp. on Turbulent Shear Flows, Davis, pp. 1961919625.
Harran, G. 1994 Analyse physique, modélisation et simulation numérique des mécanismes de mélange dans les jets simples et coaxiaux turbulents. These 841, Inst. Nat. Poly. de Toulouse.
Herard, J. M. 1986 Modelisation et calcul d’écoulements isothermes de gaz à densité variable. Thése Doct.-Ing. 400, Inst. Nat. Poly, de Toulouse.
Jones, W. P. 1979 Models for turbulent flows with variable density and combustion. Prediction Methods for Turbulent Flows. VKI Lecture Series.
Larue, J. C. & Libby, P. A. 1977 Measurements in the turbulent boundary layer with slot injection of helium. Phys. Fluids 20, 192202.Google Scholar
Larue, J. C. & Libby, P. A. 1980 Further results related to the turbulent boundary layer with slot injection of helium. Phys. Fluids 23, 11111118.Google Scholar
Launder, B. E. & Morse, A. 1977 Numerical prediction of axisymmetric free shear flows with a second-order Reynolds stress closure. Symp. on Turbulent Shear Flows, Pen State Univ. pp. 4/214/30.
O'Connor, Comfort, E. H. & Cass, L. A. 1966 Turbulent mixing of an axisymmetric jet of partially dissociated Nitrogen with ambient Air. AIAA J. 4, 20262032.Google Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993a Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.Google Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993b Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet. J. Fluid Mech. 246, 225247.Google Scholar
Patankar, S. V & Spalding, D.B. 1970 Heat and Mass Transfer in Boundary Layers, 2nd edn. Intertext Books.
Pitts, W. M. 1986 Effects of global density and Reynolds number variations on mixing in turbulent, axisymmetric jets. Int. Rep. AFOSR-ISSA-00012, NTIS, Springfields, VA.
Pitts, W. M. 1991 Effects of global density ratio on the centreline mixing behavior of axisymmetric turbulent jets. Exps. Fluids 11, 125134.Google Scholar
Rey, C. 1991 Ecoulements turbulents compressibles et variables aléatoires centrées. Tenth Cong. Fran. Mec., Paris.Google Scholar
Rey, C. & Rosant, J. M. 1990 Influence of density variations on small turbulent structures of temperature in strongly heated flows. Ninth Intl Heat. Trans. Conf. Israel, pp. 405409.
Richards, C. D. & Pitts, W. M. 1993 Global density effects on self-preservation behaviour of turbulent free jets. J. Fluid Mech. 254, 417435.Google Scholar
Rodi, W. 1972 The prediction of free turbulent boundary layers by use of a two-equation model of turbulence. PhD thesis, Mech. Eng. Dept. Imperial College London.
Sami, S. 1967 Turbulent energy in jet flow. J. Fluid Mech. 29, 8192.Google Scholar
Sarh, B. 1990 Contribution à l’étude des jets turbulents à masse volumique variable et des flammes de diffusion turbulentes. Thése Doct. d'Etat. Univ. Pierre et Marie Curie, Paris.
Sautet, J. C. 1992 Effets des différences de densité sur le développement scalaire et dynamique des jets turbulents. Thèse, Univ. de Rouen.
Schefer, R. W. & Dibble, R. W. 1985 Rayleigh scattering measurements of mixture fraction in a turbulent nonreactive propane jet. Sandia Rep. SAND 85–8837.
Schlünder, E. U. 1971 Über die Ausbreitung turbulenter Freistrahlen. Zeits. Flugwiss. 19, 108113.Google Scholar
Sforza, P. M. & Mons, R. F. 1978 Mass momentum and energy transport in turbulent free jets. Intl J. Heat Mass Transfer 21, 371384.Google Scholar
Shih, T. H., Lumley J. L. & Janicka, J. 1987 Second-order modelling of a variable-density mixing layer. J. Fluid Mech. 180, 93116.Google Scholar
Siess, J. 1975 Etude, d'après la méthode de LUMLEY de la pénétration de la turbulence dans un milieu stratifié. Thèse Doc.-Ing., Univ. Aix-Marseille.
So, R. M. C. & Liu T. M. 1986 On self-preserving, variable-density, turbulent free jets. J. Appl. Maths Phys. 37, 538558.Google Scholar
So, R. M. C., Zhu, J. Y., Otügen, M. V. & Hwang, B. C. 1990 Some measurements in a binary gas jet. Exps. Fluids 9, 237284.Google Scholar
Stepowski, D., Labbaci, K., Cabot, G. & Trinite, M. 1988 Pseudo-self-similarity in the development of low density turbulent jet issuing in a coflow air. Euromech 237, Marseille, France.
Thring, M. W. & Newby, M. P. 1953 Combustion length of enclosed turbulent jet flames. Flames and Fuel Jets, 789796.Google Scholar
Vandromme, D. 1991 Turbulence modelling for compressible flows and implementation in Navier-Stokes solvers. 1991–02. VKI Lecture Series.
Vandromme, D. & Ha Minh, H. 1987 Coupling of turbulence models with Reynolds averaged compressible Navier-Stokes equations. Application to shock interactions. IMA/SMAI Conf. Reading..
Wygnanski, I. & Fiedler, H. 1969 Some measurements in the self preserving jet. J. Fluid Mech. 38, 577612.Google Scholar
Zhu, J. Y., So, R. M. C. & Otügen, M. V. 1989 Mass transfer in a binary gas jet. AIAA J. 27, 11321135.Google Scholar