Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T01:18:33.102Z Has data issue: false hasContentIssue false

Currents induced by long waves propagating towards a beach over a wavy bed

Published online by Cambridge University Press:  25 June 2000

H. KYOTOH
Affiliation:
Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
S. FUJII
Affiliation:
Toyo Kokusai Oil Co., Ltd, Nagoya, Aichi, 467-0832, Japan
D. V. TO
Affiliation:
Department of Geophysics, Ho Chi Minh City University of Natural Science, Ho Chi Minh City, Vietnam

Abstract

For the understanding of longshore currents along a natural beach, the effects of bottom unevenness are considered to be important, especially for the flow in the swash zone. Currents in the swash zone are strongly influenced by the bed slope because the effect of gravity overwhelms the effect of the depth change. In the present paper, we investigate these effects and focus on waves propagating from offshore over a flat ocean basin of constant depth to a beach with a sloping wavy bottom. The waves are incident at a small angle to the beach normal, and the bed slope in the alongshore direction is varied slowly. To simplify the problem, only cnoidal waves and solitary waves are considered and the bed level is varied sinusoidally in the longshore direction.

A perturbation method is applied to the two-dimensional nonlinear shallow water equation (two-dimensional NLSWE) for the wave motion in order to generate a more simplified model of wave dynamics consisting of a one-dimensional NLSWE for the direction normal to the beach and an equation for the alongshore direction. The first equation, the one-dimensional NLSWE, is solved by Carrier & Greenspan's transformation. The solution of the second one is found by extending Brocchini & Peregrine's solution for a flat beach. Two methods for the solution of the one- dimensional NLSWE are introduced in order to get a solution applicable to large-amplitude swash motions, where the amplitude is comparable to the beach length. One is the Maclaurin expansion of the solution around the moving shoreline, and the other is Riemann's representation of the solution, which exactly satisfies the one-dimensional NLSWE and the boundary conditions. After doing a consistency check by confirming that Riemann's method, a numerical solution, agrees with the exact solution for an infinitely long, sloping beach, we assumed that the Maclaurin series solution can also describe wave motion in the swash zone properly not only for this model but also for our ‘wavy’, finite beach model.

The solution obtained from the Maclaurin series is then plugged into the equation for the alongshore direction to calculate the shore currents induced by wave run-up and back-wash motions, where a ‘weakly two-dimensional solution’ is derived from geometrical considerations. The results show that since the water depth near the shoreline is comparable to the bed level fluctuations, the flow is strongly affected by the bed unevenness, leading to recognizable changes in shoreline movement and the time-averaged velocity and the mass flux of the flow in the swash zone. More specifically, the inhomogeneity of the alongshore mass flux generates offshore currents because of the continuity condition for the fluid mass.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)