Published online by Cambridge University Press: 12 February 2018
A ring with a cross-section that has a blunt inner and sharper outer edge can attain an equilibrium orientation in a Newtonian fluid subject to a low Reynolds number simple shear flow. This may be contrasted with the continuous rotation exhibited by most rigid bodies. Such rings align along an orientation when the rotation due to fluid vorticity balances the counter-rotation due to the extensional component of the simple shear flow. While the viscous stress on the particle tries to rotate it, the pressure can generate a counter-vorticity torque that aligns the particle. Using boundary integral computations, we demonstrate ways to effectively control this pressure by altering the geometry of the ring cross-section, thus leading to alignment at moderate particle aspect ratios. Aligning rings that lack fore–aft symmetry can migrate indefinitely along the gradient direction. This differs from the periodic spatial trajectories of fore–aft asymmetric axisymmetric particles that rotate in periodic orbits. The mechanism for migration of aligned rings along the gradient direction is elucidated in this work. The migration speed can be controlled by varying the cross-sectional shape and size of the ring. Our results provide new insights into controlling motion of individual particles and thereby open new pathways towards manipulating macroscopic properties of a suspension.