Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-01T09:09:46.395Z Has data issue: false hasContentIssue false

Condensates in rotating turbulent flows

Published online by Cambridge University Press:  23 February 2018

Kannabiran Seshasayanan*
Affiliation:
Laboratoire de physique statistique, Département de physique de l’ École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
Alexandros Alexakis
Affiliation:
Laboratoire de physique statistique, Département de physique de l’ École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

Using a large number of numerical simulations we examine the steady state of rotating turbulent flows in triple periodic domains, varying the Rossby number $Ro$ (that measures the inverse rotation rate) and the Reynolds number $Re$ (that measures the strength of turbulence). The examined flows are sustained by either a helical or a non-helical Roberts force, that is invariant along the axis of rotation. The forcing acts at a wavenumber $k_{f}$ such that $k_{f}L=4$, where $2\unicode[STIX]{x03C0}L$ is the size of the domain. Different flow behaviours were obtained as the parameters are varied. Above a critical rotation rate the flow becomes quasi-two-dimensional and transfers energy to the largest scales of the system, forming large coherent structures known as condensates. We examine the behaviour of these condensates and their scaling properties close to and away from this critical rotation rate. Close to the critical rotation rate the system transitions supercritically to the condensate state, displaying a bimodal behaviour oscillating randomly between an incoherent-turbulent state and a condensate state. Away from the critical rotation rate, it is shown that two distinct mechanisms can saturate the growth of the large-scale energy. The first mechanism is due to viscous forces and is similar to the saturation mechanism observed for the inverse cascade in two-dimensional flows. The second mechanism is independent of viscosity and relies on the breaking of the two-dimensionalization condition of the rotating flow. The two mechanisms predict different scaling with respect to the control parameters of the system (Rossby and Reynolds), which are tested with the present results of the numerical simulations. A phase space diagram in the $Re,Ro$ parameter plane is sketched.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2011 Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field. Phys. Rev. E 84 (5), 056330.Google Scholar
Alexakis, A. 2015 Rotating Taylor–Green flow. J. Fluid Mech. 769, 4678.CrossRefGoogle Scholar
Baroud, C. N., Plapp, B. B., She, Z.-S. & Swinney, H. L. 2002 Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88 (11), 114501.CrossRefGoogle Scholar
Baroud, C. N., Plapp, B. B., Swinney, H. L. & She, Z.-S. 2003 Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows. Phys. Fluids 15 (8), 20912104.CrossRefGoogle Scholar
Bartello, P., Metais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 129.CrossRefGoogle Scholar
Benavides, S. J. & Alexakis, A. 2017 Critical transitions in thin layer turbulence. J. Fluid Mech. 822, 364385.CrossRefGoogle Scholar
Biferale, L., Bonaccorso, F., Mazzitelli, I. M., van Hinsberg, M. A. T., Lanotte, A. S., Musacchio, S., Perlekar, P. & Toschi, F. 2016 Coherent structures and extreme events in rotating multiphase turbulent flows. Phys. Rev. X 6 (4), 041036.Google Scholar
Boffetta, G., De Lillo, F., Mazzino, A. & Musacchio, S. 2011 A flux loop mechanism in two-dimensional stratified turbulence. Europhys. Lett. 95 (3), 34001.CrossRefGoogle Scholar
van Bokhoven, L. J. A., Clercx, H. J. H., van Heijst, G. J. F. & Trieling, R. R. 2009 Experiments on rapidly rotating turbulent flows. Phys. Fluids 21 (9), 096601.Google Scholar
Bouchet, F. & Simonnet, E. 2009 Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102 (9), 094504.CrossRefGoogle ScholarPubMed
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515 (5), 227295.CrossRefGoogle Scholar
Bourouiba, L. & Bartello, P. 2007 The intermediate rossby number range and two-dimensional–three-dimensional transfers in rotating decaying homogeneous turbulence. J. Fluid Mech. 587, 139161.CrossRefGoogle Scholar
Caldwell, D. R., Van Atta, C. W. & Helland, K. N. 1972 A laboratory study of the turbulent Ekman layer. Geophys. Astrophys. Fluid Dyn. 3 (1), 125160.CrossRefGoogle Scholar
Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P. 2014 Direct and inverse energy cascades in a forced rotating turbulence experiment. Phys. Fluids 26 (12), 125112.Google Scholar
Campagne, A., Gallet, B., Moisy, F. & Cortet, P.-P. 2015 Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment. Phys. Rev. E 91 (4), 043016.Google Scholar
Campagne, A., Machicoane, N., Gallet, B., Cortet, P.-P. & Moisy, F. 2016 Turbulent drag in a rotating frame. J. Fluid Mech. 794, R5.CrossRefGoogle Scholar
Celani, A., Musacchio, S. & Vincenzi, D. 2010 Turbulence in more than two and less than three dimensions. Phys. Rev. Lett. 104 (18), 184506.Google Scholar
Chen, Q., Chen, S., Eyink, G. L. & Holm, D. D. 2005 Resonant interactions in rotating homogeneous three-dimensional turbulence. J. Fluid Mech. 542, 139164.CrossRefGoogle Scholar
Clark di Leoni, P. & Mininni, P. D. 2016 Quantifying resonant and near-resonant interactions in rotating turbulence. J. Fluid Mech. 809, 821842.CrossRefGoogle Scholar
Courant, R., Friedrichs, K. & Lewy, H. 1928 Über die partiellen Differenzengleichungen der Mathematischen. Physik. Math. Ann. 100, 3274.Google Scholar
Dallas, V. & Tobias, S. M. 2016 Forcing-dependent dynamics and emergence of helicity in rotating turbulence. J. Fluid Mech. 798, 682695.Google Scholar
Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S. 2014 Dimensional transition in rotating turbulence. Phys. Rev. E 90 (2), 023005.Google Scholar
Dickinson, S. C. & Long, R. R. 1983 Oscillating-grid turbulence including effects of rotation. J. Fluid Mech. 126, 315333.Google Scholar
Duran-Matute, M., Flór, J.-B., Godeferd, F. S. & Jause-Labert, C. 2013 Turbulence and columnar vortex formation through inertial-wave focusing. Phys. Rev. E 87 (4), 041001.Google ScholarPubMed
Ekman, V. W. 1905 On the influence of the earth\’s rotation on ocean currents. Ark. Mat. Astron. Fys. 2, 153.Google Scholar
Falkovich, G. & Kritsuk, A. G. 2017 How vortices and shocks provide for a flux loop in two-dimensional compressible turbulence. Phys. Rev. Fluids 2 (9), 092603.Google Scholar
Favier, B., Godeferd, F. S. & Cambon, C. 2010 On space and time correlations of isotropic and rotating turbulence. Phys. Fluids 22 (1), 015101.CrossRefGoogle Scholar
Favier, B., Silvers, L. J. & Proctor, M. R. E. 2014 Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26 (9), 096605.CrossRefGoogle Scholar
Frishman, A., Laurie, J. & Falkovich, G. 2017 Jets or vortices what flows are generated by an inverse turbulent cascade? Phys. Rev. Fluids 2 (3), 032602.CrossRefGoogle Scholar
Gallet, B. 2015 Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. J. Fluid Mech. 783, 412447.Google Scholar
Gallet, B., Campagne, A., Cortet, P.-P. & Moisy, F. 2014 Scale-dependent cyclone–anticyclone asymmetry in a forced rotating turbulence experiment. Phys. Fluids 26 (3), 035108.Google Scholar
Gallet, B. & Young, W. R. 2013 A two-dimensional vortex condensate at high Reynolds number. J. Fluid Mech. 715, 359388.CrossRefGoogle Scholar
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301.Google ScholarPubMed
Godeferd, F. S. & Lollini, L. 1999 Direct numerical simulations of turbulence with confinement and rotation. J. Fluid Mech. 393, 257308.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Guervilly, C. & Hughes, D. W. 2017 Jets and large-scale vortices in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 2 (11), 113503.Google Scholar
Guervilly, C., Hughes, D. W. & Jones, C. A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bérnard convection. J. Fluid Mech. 758, 407435.Google Scholar
Hopfinger, E. J., Browand, F. K. & Gagne, Y. 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505534.Google Scholar
Hopfinger, E. J. & Heijst, G. J. F. V. 1993 Vortices in rotating fluids. Annu. Rev. Fluid Mech. 25 (1), 241289.Google Scholar
Hough, S. S. 1897 On the application of harmonic analysis to the dynamical theory of the tides. Part I. On Laplace’s ‘Oscillations of the first species’, and on the dynamics of ocean currents. Phil. Trans. R. Soc. Lond. A 189, 201257.Google Scholar
Howroyd, G. C. & Slawson, P. R. 1975 The characteristics of a laboratory produced turbulent Ekman layer. Boundary-Layer Meteorol. 8 (2), 201219.CrossRefGoogle Scholar
Ibbetson, A. & Tritton, D. J. 1975 Experiments on turbulence in a rotating fluid. J. Fluid Mech. 68 (4), 639672.CrossRefGoogle Scholar
Ishihara, T., Morishita, K., Yokokawa, M., Uno, A. & Kaneda, Y. 2016 Energy spectrum in high-resolution direct numerical simulations of turbulence. Phys. Rev. Fluids 1 (8), 082403.CrossRefGoogle Scholar
Julien, K., Knobloch, E. & Plumley, M. 2018 Impact of domain anisotropy on the inverse cascade in geostrophic turbulent convection. J. Fluid Mech. 837.Google Scholar
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proc. USSR Acad. Sci. 30, 299303.Google Scholar
Kraichnan, R. H.1967 Inertial ranges in two-dimensional turbulence. Tech. Rep. DTIC Document.Google Scholar
Kunnen, R. P., Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R. & Lohse, D. 2016 Transition to geostrophic convection: the role of the boundary conditions. J. Fluid Mech. 799, 413432.Google Scholar
di Leoni, P. C., Cobelli, P. J. & Mininni, P. D. 2015 The spatio-temporal spectrum of turbulent flows. Euro. Phys. J. E 38 (12), 136.CrossRefGoogle Scholar
Machicoane, N., Moisy, F. & Cortet, P.-P. 2016 Two-dimensionalization of the flow driven by a slowly rotating impeller in a rapidly rotating fluid. Phys. Rev. Fluids 1, 073701.CrossRefGoogle Scholar
Marino, R., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2013 Inverse cascades in rotating stratified turbulence: fast growth of large scales. Europhys. Lett. 102 (4), 44006.CrossRefGoogle Scholar
Marino, R., Pouquet, A. & Rosenberg, D. 2015 Resolving the paradox of oceanic large-scale balance and small-scale mixing. Phys. Rev. Lett. 114 (11), 114504.Google Scholar
Mininni, P. D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21 (1), 015108.Google Scholar
Mininni, P. D. & Pouquet, A. 2010 Rotating helical turbulence. I. Global evolution and spectral behavior. Phys. Fluids 22 (3), 035105.Google Scholar
Mininni, P. D., Rosenberg, D., Reddy, R. & Pouquet, A. 2011 A hybrid MPI–OPENMP scheme for scalable parallel pseudospectral computations for fluid turbulence. Parallel Comput. 37 (6), 316326.CrossRefGoogle Scholar
Mishra, P. K., Herault, J., Fauve, S. & Verma, M. K. 2015 Dynamics of reversals and condensates in two-dimensional Kolmogorov flows. Phys. Rev. E 91 (5), 053005.Google Scholar
Moisy, F., Morize, C., Rabaud, M. & Sommeria, J. 2011 Decay laws, anisotropy and cyclone–anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. 666, 535.Google Scholar
Morize, C. & Moisy, F. 2006 Energy decay of rotating turbulence with confinement effects. Phys. Fluids 18 (6), 065107.Google Scholar
Nazarenko, S. 2011 Wave Turbulence, vol. 825. Springer Science & Business Media.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.Google Scholar
Plumley, M., Julien, K., Marti, P. & Stellmach, S. 2016 The effects of Ekman pumping on quasi-geostrophic Rayleigh–Bénard convection. J. Fluid Mech. 803, 5171.CrossRefGoogle Scholar
Pouquet, A. & Marino, R. 2013 Geophysical turbulence and the duality of the energy flow across scales. Phys. Rev. Lett. 111 (23), 234501.Google Scholar
Pouquet, A., Sen, A., Rosenberg, D., Mininni, P. D. & Baerenzung, J. 2013 Inverse cascades in turbulence and the case of rotating flows. Phys. Scr. 2013 (T155), 014032.Google Scholar
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Phil. Trans. R. Soc. Lond. A 92, 408424.Google Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110 (756), 709737.Google Scholar
Roberts, G. O. 1972 Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. R. Soc. Lond. A 271 (1216), 411454.Google Scholar
Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501.Google Scholar
Ruppert-Felsot, J. E., Praud, O., Sharon, E. & Swinney, H. L. 2005 Extraction of coherent structures in a rotating turbulent flow experiment. Phys. Rev. E 72 (1), 016311.Google Scholar
Scott, J. F. 2014 Wave turbulence in a rotating channel. J. Fluid Mech. 741, 316349.Google Scholar
Sen, A., Mininni, P. D., Rosenberg, D. & Pouquet, A. 2012 Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence. Phys. Rev. E 86 (3), 036319.Google ScholarPubMed
Seshasayanan, K. & Alexakis, A. 2016 Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow. Phys. Rev. E 93 (1), 013104.Google Scholar
Seshasayanan, K., Benavides, S. J. & Alexakis, A. 2014 On the edge of an inverse cascade. Phys. Rev. E 90 (5), 051003.Google ScholarPubMed
Seshasayanan, K., Dallas, V. & Alexakis, A. 2017 The onset of turbulent rotating dynamos at the low magnetic Prandtl number limit. J. Fluid Mech. 822, R3.Google Scholar
Shats, M. G., Xia, H., Punzmann, H. & Falkovich, G. 2007 Suppression of turbulence by self-generated and imposed mean flows. Phys. Rev. Lett. 99 (16), 164502.CrossRefGoogle ScholarPubMed
Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two-to three-dimensional turbulence. Phys. Rev. Lett. 77 (12), 2467.Google Scholar
Smith, L. M. & Waleffe, F. 1999 Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys. Fluids 11, 16081622.Google Scholar
Smith, L. M. & Yakhot, V. 1994 Finite-size effects in forced two-dimensional turbulence. J. Fluid Mech. 274, 115138.Google Scholar
Sous, D., Sommeria, J. & Boyer, D. L. 2013 Friction law and turbulent properties in a laboratory Ekman boundary layer. Phys. Fluids 25 (4), 046602.Google Scholar
Sozza, A., Boffetta, G., Muratore-Ginanneschi, P. & Musacchio, S. 2015 Dimensional transition of energy cascades in stably stratified forced thin fluid layers. Phys. Fluids 27 (3), 035112.CrossRefGoogle Scholar
Sreenivasan, B. & Davidson, P. A. 2008 On the formation of cyclones and anticyclones in a rotating fluid. Phys. Fluids 20 (8), 085104.Google Scholar
Sreenivasan, K. R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27 (5), 10481051.Google Scholar
Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B. 2008 Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81105.CrossRefGoogle Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113 (25), 254501.Google Scholar
Sugihara, Y., Migita, M. & Honji, H. 2005 Orderly flow structures in grid-generated turbulence with background rotation. Fluid Dyn. Res. 36, 2334.Google Scholar
Taylor, G. I. 1917 Motion of solids in fluids when the flow is not irrotational. Proc. R. Soc. Lond. A 93, 99113.Google Scholar
Thiele, M. & Müller, W.-C. 2009 Structure and decay of rotating homogeneous turbulence. J. Fluid Mech. 637, 425.Google Scholar
Tsang, Y. K. & Young, W. R. 2009 Forced-dissipative two-dimensional turbulence: a scaling regime controlled by drag. Phys. Rev. E 79 (4), 045308.Google Scholar
Valente, P. C. & Dallas, V. 2017 Spectral imbalance in the inertial range dynamics of decaying rotating turbulence. Phys. Rev. E 95 (2), 023114.Google ScholarPubMed
Van Bokhoven, L. J. A., Cambon, C., Liechtenstein, L., Godeferd, F. S. & Clercx, H. J. H. 2008 Refined vorticity statistics of decaying rotating three-dimensional turbulence. J. Turbul. 9 (N6).Google Scholar
Weeks, E. R., Tian, Y., Urbach, J. S., Ide, K., Swinney, H. L. & Ghil, M. 1997 Transitions between blocked and zonal flows in a rotating annulus with topography. Science 278 (5343), 15981601.CrossRefGoogle Scholar
Xia, H., Punzmann, H., Falkovich, G. & Shats, M. G. 2008 Turbulence-condensate interaction in two dimensions. Phys. Rev. Lett. 101 (19), 194504.Google Scholar
Yarom, E. & Sharon, E. 2014 Experimental observation of steady inertial wave turbulence in deep rotating flows. Nat. Phys. 10 (7), 510514.Google Scholar
Yarom, E., Vardi, Y. & Sharon, E. 2013 Experimental quantification of inverse energy cascade in deep rotating turbulence. Phys. Fluids 25 (8), 085105.Google Scholar
Yeung, P. K. & Zhou, Y. 1998 Numerical study of rotating turbulence with external forcing. Phys. Fluids 10 (11), 28952909.Google Scholar
Yokoyama, N. & Takaoka, M. 2017 Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence. Phys. Rev. Fluids 2 (9), 092602.Google Scholar
Yoshimatsu, K., Midorikawa, M. & Kaneda, Y. 2011 Columnar eddy formation in freely decaying homogeneous rotating turbulence. J. Fluid Mech. 677, 154178.Google Scholar
Zavala Sansón, L., van Heijst, G. J. F. & Backx, N. A. 2001 Ekman decay of a dipolar vortex in a rotating fluid. Phys. Fluids 13 (2), 440451.Google Scholar
Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6 (10), 32213223.Google Scholar