Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T15:53:57.888Z Has data issue: false hasContentIssue false

Concentration and velocity statistics of inertial particles in upward and downward pipe flow

Published online by Cambridge University Press:  07 June 2017

J. L. G. Oliveira
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
C. W. M. van der Geld*
Affiliation:
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, The Netherlands
J. G. M. Kuerten
Affiliation:
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands Faculty EEMCS, University of Twente, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

Three-dimensional particle tracking velocimetry is applied to particle-laden turbulent pipe flows at a Reynolds number of 10 300, based on the bulk velocity and the pipe diameter, for developed fluid flow and not fully developed flow of inertial particles, which favours assessment of the radial migration of the inertial particles. Inertial particles with Stokes number ranging from 0.35 to 1.11, based on the particle relaxation time and the radial-dependent Kolmogorov time scale, and a ratio of the root-mean-square fluid velocity to the terminal velocity of order 1 have been used. Core peaking of the concentration of inertial particles in up-flow and wall peaking in down-flow have been found. The difference in mean particle and Eulerian mean liquid velocity is found to decrease to approximately zero near the wall in both flow directions. Although the carrier fluid has all of the characteristics of the corresponding turbulent single-phase flow, the Reynolds stress of the inertial particles is different near the wall in up-flow. These findings are explained from the preferential location of the inertial particles with the aid of direct numerical simulations with the point-particle approach.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Mobility Department, Federal University of Santa Catarina, Joinville/SC, 89218-000, Brazil.

References

Albrecht, H.-E., Borys, M., Damaschke, N. & Tropea, C. 2003 Laser Doppler and Phase Doppler Measurement Techniques. Springer.CrossRefGoogle Scholar
Aliseda, A. & Lasheras, J. C. 2011 Preferential concentration and rise velocity reduction of bubbles immersed in a homogeneous and isotropic turbulent flow. Phys. Fluids 23, 093301.CrossRefGoogle Scholar
Auton, T. R. 1987 The lift force on a spherical rotational flow. J. Fluid Mech. 183, 199218.CrossRefGoogle Scholar
Auton, T. R., Hunt, J. C. R. & Prud’homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15, N11.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Benson, M., Tanaka, T. & Eaton, J. K. 2005 The effects of wall roughness on particle velocities in a turbulent channel flow. Trans. ASME J. Fluids Engng 127, 250256.CrossRefGoogle Scholar
Borée, J. & Caraman, N. 2005 Dilute bidispersed tube flow: role of interclass collisions at increased loadings. Phys. Fluids 17, 055108.CrossRefGoogle Scholar
Brown, R. D., Warhaft, Z. & Voth, G. A. 2009 Acceleration statistics of neutrally buoyant spherical particles in intense turbulence. Phys. Rev. Lett. 103 (19), 194501.CrossRefGoogle ScholarPubMed
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.CrossRefGoogle Scholar
Caraman, N., Borée, J. & Simonin, O. 2003 Effect of collisions on the dispersed phase fluctuation in a dilute tube flow: experimental and theoretical analysis. Phys. Fluids 15 (12), 36023612.CrossRefGoogle Scholar
Dijkhuizen, W., Van Sint Annaland, M. & Kuipers, J. A. M. 2010 Numerical and experimental investigation of the lift force on single bubbles. Chem. Engng Sci. 65, 12741287.CrossRefGoogle Scholar
Dracos, T. 1996 Particle tracking in three-dimensional space. In Three-dimensional Velocity and Vorticity Measuring in Image Analysis Techniques (ed. Dracos, Th.), Kluwer Academic.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
van der Geld, C. W. M. 1997 Measurement and prediction of solid sphere trajectories in accelerated gas flow. Intl J. Multiphase Flow 23 (2), 357376.CrossRefGoogle Scholar
van der Geld, C. W. M. 2002 On the motion of a spherical bubble deforming near a plane wall. J. Engng Maths 42 (2), 91118.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.Google Scholar
Kulick, J. D., Fessler, J. R. & Eaton, J. K. 1994 Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech. 277, 109134.CrossRefGoogle Scholar
Kunkel, A. J. J. & Smits, A. J. M. 2007 Further support for Townsend’s Reynolds number similarity hypothesis in high Reynolds number rough-wall pipe flow. Phys. Fluids 19, 055109.CrossRefGoogle Scholar
Kussin, J. & Sommerfeld, M. 2002 Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Exp. Fluids 33, 143159.CrossRefGoogle Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.CrossRefGoogle Scholar
Lucas, D. & Tomiyama, A. 2011 On the role of the lateral lift force in poly-dispersed bubbly flows. Intl J. Multiphase Flow 37, 11781190.CrossRefGoogle Scholar
Maas, H.-G. 1996 Contributions of digital photogrammetry to 3D-PTV. In Three-dimensional Velocity and Vorticity Measuring in Image Analysis Techniques (ed. Dracos, Th.), Kluwer Academic.Google Scholar
Mazzitelli, I. M., Lohse, D. & Toschi, F. 2003 On the relevance of the lift force in bubbly turbulence. J. Fluid Mech. 488, 283313.CrossRefGoogle Scholar
Miller, R. W. 1996 Flow Measurement Engineering Handbook, 3rd edn. McGraw-Hill.Google Scholar
Minier, J.-P. 2015 On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Prog. Energy Combust. Sci. 50, 162.CrossRefGoogle Scholar
Oliveira, J. L. G.2012 3D-PTV of particle-laden turbulent pipe flows, PhD thesis, Technische Universiteit Eindhoven.Google Scholar
Oliveira, J. L. G., van der Geld, C. W. M. & Kuerten, J. G. M. 2013 Lagrangian and Eulerian statistics of pipe flows measured with 3D-PTV at moderate and high Reynolds numbers. Flow Turbul. Combust. 91 (1), 105137.CrossRefGoogle Scholar
Oliveira, J. L. G., van der Geld, C. W. M. & Kuerten, J. G. M. 2015 Lagrangian velocity and acceleration statistics of fluid and inertial particles measured in pipe flow with 3D particle tracking velocimetry. Intl J. Multiphase Flow 73, 97107.CrossRefGoogle Scholar
Paris, A. D. & Eaton, J. K.2001 Turbulence attenuation in a particle-laden channel flow. Tech. Rep. TSD-137. Stanford University.Google Scholar
Picano, F., Breugem, W.-P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.CrossRefGoogle Scholar
Poelma, C.2004 Experiments in particle-laden turbulence – simultaneous particle/fluid measurements in grid-generated turbulence using particle image velocimetry. PhD thesis, Delft University of Technology.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.CrossRefGoogle ScholarPubMed
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Sato, Y. & Hishida, K. 1996 Transport process of turbulence energy in particle-laden turbulent flow. Intl J. Heat Fluid Flow 17, 202210.CrossRefGoogle Scholar
Schiller, L. & Naumann, Z. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77.Google Scholar
Sene, K. J., Hunt, J. C. R. & Thomas, N. H. 1994 The role of coherent structures in bubble transport by turbulent shear flows. J. Fluid Mech. 259, 219240.CrossRefGoogle Scholar
Spelt, P. D. M. & Biesheuvel, A. 1997 On the motion of gas bubbles in homogeneous isotropic turbulence. J. Fluid Mech. 336, 221244.CrossRefGoogle Scholar
Suzuki, Y., Ikenoya, M. & Kasagi, N. 2000 Simultaneous measurements of fluid and dispersed phases in a particle-laden turbulent channel flow with the aid of 3-D PTV. Exp. Fluids 29, 185193.CrossRefGoogle Scholar
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.-J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708759.CrossRefGoogle Scholar
Tsuji, Y. & Morikawa, Y. 1982 LDV measurements of an air–solid two-phase flow in a horizontal pipe. J. Fluid Mech. 120, 385409.CrossRefGoogle Scholar
Tsuji, Y., Morikawa, Y. & Shiomi, H. H. 1984 LDV measurements of an air–solid two-phase flow in a vertical pipe. J. Fluid Mech. 139, 417434.CrossRefGoogle Scholar
Veenman, M. P. B.2004 Statistical analysis of turbulent pipe flow: a numerical approach. PhD thesis, Technische Universiteit Eindhoven.Google Scholar
Volk, R., Calzavarini, E., Lévêque, E. & Pinton, J.-F. 2011 Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid. Mech. 668, 223235.CrossRefGoogle Scholar
Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.CrossRefGoogle Scholar
Vreman, A. W. 2016 Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres. J. Fluid Mech. 796, 4085.CrossRefGoogle Scholar
Walpot, R. J. E., van der Geld, C. W. M. & Kuerten, J. G. M. 2007 Determination of the coefficient of Langevin models for inhomogeneous turbulent flows by 3D PTV and DNS. Phys. Fluids 19, 045102.CrossRefGoogle Scholar
Yang, T. S. & Shy, S. S. 2005 Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. J. Fluid Mech. 526, 171216.CrossRefGoogle Scholar