Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T08:48:35.176Z Has data issue: false hasContentIssue false

Compressibility effects on energy exchange mechanisms in a spatially developing plane free shear layer

Published online by Cambridge University Press:  12 January 2021

D. Li
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL60607, USA
A. Peyvan
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL60607, USA
Z. Ghiasi
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL60607, USA
J. Komperda
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL60607, USA
F. Mashayek*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL60607, USA
*
Email address for correspondence: [email protected]

Abstract

The compressibility effects on energy exchange mechanisms in a three-dimensional, spatially developing plane free shear layer are investigated via data produced by direct numerical simulation. The compressible shear layer is simulated using a high-order discontinuous spectral element method for convective Mach numbers $M_c = 0.3$, 0.5 and 0.7. The energy exchange mechanisms in the flow are examined by analysing the budget terms of mean kinetic, internal and turbulent kinetic energy transport equations, in both transition and turbulent regions. The results show that turbulent production, turbulent viscous dissipation, mean viscous dissipation, pressure dilatation and enthalpic production are the main mechanisms responsible for energy exchange among different forms of energy. The effects of compressibility on energy transfer mechanisms are studied based on the analyses of those five budget terms. The primary budget terms evolve differently in the transition and turbulent regions and change significantly for varying compressibility. In the transition region, a double-peak variation becomes a single peak in the streamwise profile of the turbulent production as $M_c$ increases from 0.3 to 0.7, due to significant changes in the vortex pairing structures. The shear layer centre slightly shifts to the high-speed side due to the appearance of the velocity deficit. The velocity deficit presence distance (VDPD) becomes longer as compressibility increases. However, in the turbulent region, the cross-stream profiles of the main budget terms significantly shift to the low-speed side because of the asymmetric mass entrainment and shift even further as $M_c$ increases.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atoufi, A., Fathali, M. & Lessani, B. 2015 Compressibility effects and turbulent kinetic energy exchange in temporal mixing layers. J. Turbul. 16, 676703.10.1080/14685248.2015.1024838CrossRefGoogle Scholar
Birch, S. F. & Eggers, J. M. 1972 A critical review of the experimental data for developed free turbulent shear layers. NASA Tech. Rep. SP 321. National Aeronautics and Space Administration.Google Scholar
Blaisdell, G. A., Coleman, G. N. & Mansour, N. N. 1996 Rapid distortion theory for compressible homogeneous turbulence under isotropic mean strain. Phys. Fluids 8, 26922705.10.1063/1.869055CrossRefGoogle Scholar
Blaisdell, G. A., Mansour, N. N. & Reynolds, W. C. 1993 Compressibility effects on the growth and structure of homogeneous turbulent shear flows. J. Fluid Mech. 256, 443485.10.1017/S0022112093002848CrossRefGoogle Scholar
Blaisdell, G. A. & Zeman, O. 1992 Investigation of the dilatational dissipation in compressible homogeneous shear flow. In Proceedings of the 1992 Summer Program, Center for Turbulence Research, Stanford/NASA Ames (ed. Moin, P., Reynolds, W. C. & Kim, J.), pp. 231–245. Stanford University.Google Scholar
Bode, B., Butler, M., Dunning, T., Hoefler, T., Kramer, W., Gropp, W. & Hwu, W. 2013 The Blue Waters super-system for super-science. In Contemporary High Performance Computing, pp. 339–366. CRC Press.10.1201/9781351104005-13CrossRefGoogle Scholar
Bogdanoff, D. W. 1983 Compressibility effects in turbulent shear layers. AIAA J. 21, 926927.10.2514/3.60135CrossRefGoogle Scholar
Bradshaw, P. 1966 The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26, 225236.10.1017/S0022112066001204CrossRefGoogle Scholar
Brown, C. S., Shaver, D. R., Lahey, R. T. & Bolotnov, I. A. 2017 Wall-resolved spectral cascade-transport turbulence model. Nucl. Sci. Engng 320, 309324.10.1016/j.nucengdes.2017.06.001CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.10.1017/S002211207400190XCrossRefGoogle Scholar
Cadiou, A., Hanjalic, K. & Stawiarski, K. 2004 A two-scale second-moment turbulence closure based on weighted spectrum integration. Theor. Comput. Fluid Dyn. 18, 126.10.1007/s00162-004-0118-4CrossRefGoogle Scholar
Carpenter, M. H. & Kennedy, C. A. 1994 Fourth-order 2N-storage Runge–Kutta schemes. NASA Tech. Rep. TM 109112. National Aeronautics and Space Administration.Google Scholar
Chen, J. H., Cantwell, B. J. & Mansour, N. N. 1989 The effect of Mach number on the stability of a plane supersonic wake. Phys. Fluids A 2, 9841004.10.1063/1.857606CrossRefGoogle Scholar
Chen, Z., Yi, S., He, L., Tian, L. & Zhu, Y. 2012 An experimental study on fine structures of supersonic laminar/turbulent flow over a backward-facing step based on NPLS. Chinese Sci. Bull. 57, 584590.10.1007/s11434-011-4888-yCrossRefGoogle Scholar
Chu, B. T. & Kovasznay, L. S. G. 1958 Non-linear interaction in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494514.10.1017/S0022112058000148CrossRefGoogle Scholar
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.10.1017/S0022112095000310CrossRefGoogle Scholar
Corrsin, S. & Kistler, A. 1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. TN 1244. National Advisory Committee for Aeronautics.Google Scholar
Day, M. J., Mansour, N. N. & Reynolds, W. C. 2001 Nonlinear stability and structure of compressible reacting mixing layer. J. Fluid Mech. 446, 375408.10.1017/S002211200100595XCrossRefGoogle Scholar
Day, M. J., Reynolds, W. C. & Mansour, N. N. 1998 The structure of the compressible reacting mixing layer: insights from linear stability analysis. Phys. Fluids 10, 9931007.10.1063/1.869619CrossRefGoogle Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 17911796.10.2514/3.9525CrossRefGoogle Scholar
Elliott, G. S. & Samimy, M. 1990 Compressibility effects in free shear layers. Phys. Fluids A 2, 12311240.10.1063/1.857816CrossRefGoogle Scholar
Erlebacher, G., Hussaini, M. Y., Kreiss, H. O. & Sarkar, S. 1990 The analysis and simulation of compressible turbulence. Theor. Comput. Fluid Dyn. 2, 7395.Google Scholar
Favre, A. 1965 The equations of compressible turbulent gases. Annual Summary Report AD0622097.10.21236/AD0622097CrossRefGoogle Scholar
Favre, A. 1969 Statistical Equations of Turbulent Gases. Problems of Hydrodynamics and Continuum Mechanics, pp. 231266. SIAM.Google Scholar
Foysi, H. & Sarkar, S. 2010 The compressible mixing layer: an LES study. Theor. Comput. Fluid Dyn. 24, 565588.10.1007/s00162-009-0176-8CrossRefGoogle Scholar
Freund, J. B., Lele, S. K. & Moin, P. 2000 Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229267.10.1017/S0022112000001622CrossRefGoogle Scholar
Fu, S. & Li, Q. 2006 Numerical simulation of compressible mixing layers. Intl J. Heat Fluid Flow 27, 895901.10.1016/j.ijheatfluidflow.2006.03.028CrossRefGoogle Scholar
Gao, Z. & Mashayek, F. 2004 Stochastic model for non-isothermal droplet-laden turbulent flows. AIAA J. 42, 255260.10.2514/1.766CrossRefGoogle Scholar
Ghiasi, Z., Komperda, J., Li, D. & Mashayek, F. 2016 Simulation of supersonic turbulent non-reactive flow in ramp-cavity combustor using a discontinuous spectral element method. AIAA Paper 2016-0617.10.2514/6.2016-0617CrossRefGoogle Scholar
Ghiasi, Z., Komperda, J., Li, D., Peyvan, A., Nicholls, D. & Mashayek, F. 2019 Modal explicit filtering for large eddy simulation in discontinuous spectral element method. J. Comput. Phys. 3, 100024.Google Scholar
Goebel, S. G. & Dutton, J. C. 1991 Experimental study of compressible turbulent mixing layers. AIAA J. 29, 538546.10.2514/3.10617CrossRefGoogle Scholar
Gortler, H. 1942 Berechnung von aufgaben der freien turbulenz auf grund eines neuen naherungsansatzes. Z. Angew. Math. Mech. 22, 244254.10.1002/zamm.19420220503CrossRefGoogle Scholar
Grosch, C. E. & Jackson, T. L. 1991 Inviscid spatial stability of a three-dimensional compressible mixing layer. J. Fluid Mech. 231, 3550.10.1017/S0022112091003300CrossRefGoogle Scholar
Hall, J. L., Dimotakis, P. E. & Rosemann, H. 1993 Experiments in non-reacting compressible shear layers. AIAA J. 31, 22472254.10.2514/3.11922CrossRefGoogle Scholar
Hamba, F. 1999 Effects of pressure fluctuations on turbulence growth in compressible shear flow. Phys. Fluids 11, 16231635.10.1063/1.870023CrossRefGoogle Scholar
Ho, C.-M. & Huang, L.-S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.10.1017/S0022112082001438CrossRefGoogle Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.10.1146/annurev.fl.16.010184.002053CrossRefGoogle Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.10.1017/S0022112095004599CrossRefGoogle Scholar
Hussaini, M. Y. & Voigt, R. G. 1990 Instability and Transition. Springer.Google Scholar
Jackson, T. L. & Grosch, C. E. 1989 Inviscid spatial stability of a compressible mixing layer. J. Fluid Mech. 208, 609637.10.1017/S002211208900296XCrossRefGoogle Scholar
Jacobs, G. B. 2003 Numerical simulation of two-phase turbulent compressible flows with a multidomain spectral method. PhD thesis, University of Illinois at Chicago, Chicago, IL.Google Scholar
Jacobs, G. B., Kopriva, D. A. & Mashayek, F. 2003 A comparison of outflow boundary conditions for the multidomain staggered-grid spectral method. Numer. Heat Transfer 44 (3), 225251.10.1080/713836380CrossRefGoogle Scholar
Jacobs, G. B., Kopriva, D. A. & Mashayek, F. 2004 Compressibility effects on the subsonic two-phase flow over a square cylinder. J. Propul. Power 20, 353359.10.2514/1.9259CrossRefGoogle Scholar
Jacobs, G. B., Kopriva, D. A. & Mashayek, F. 2005 Validation study of a multidomain spectral code for simulation of turbulent flows. AIAA J. 43, 12561264.10.2514/1.12065CrossRefGoogle Scholar
Jahanbakhshi, R. & Madnia, C. K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.10.1017/jfm.2016.296CrossRefGoogle Scholar
Javed, A., Rajan, N. K. S. & Chakraborty, D. 2013 Effect of side confining walls on the growth rate of compressible mixing layers. Comput. Fluids 86, 500509.10.1016/j.compfluid.2013.07.025CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulence and Vortex Dynamics. Notes for the Polytechnic Course on Turbulence. École Polytechnique, Paris.Google Scholar
Kida, S. & Orszag, S. A. 1990 Energy and spectral dynamics in forced compressible turbulence. J. Sci. Comput. 5, 85125.10.1007/BF01065580CrossRefGoogle Scholar
Kida, S. & Orszag, S. A. 1992 Energy and spectral dynamics in decaying compressible turbulence. J. Sci. Comput. 7, 134.10.1007/BF01060209CrossRefGoogle Scholar
Komperda, J., Ghiasi, Z., Li, D., Peyvan, A., Jaberi, F. & Mashayek, F. 2020 a A hybrid discontinuous spectral element method and filtered mass density function solver for turbulent reacting flows. Numer. Heat Transfer 78, 129.10.1080/10407790.2020.1746608CrossRefGoogle Scholar
Komperda, J., Li, D., Peyvan, A. & Mashayek, F. 2020 b Filtered density function for shocked compressible flows on unstructured spectral element grids. AIAA Paper 2020-1789.10.2514/6.2020-1789CrossRefGoogle Scholar
Koochesfahani, M. M., Catherasoo, C. J., Dimotakis, P. E., Gharib, M. & Lang, D. B. 1979 Two-point LDV measurements in a plane mixing layer. AIAA J. 17, 134711351.CrossRefGoogle Scholar
Kopriva, D. A. 1998 A staggered-grid multidomain spectral method for the compressible Navier–Stokes equations. J. Comput. Phys. 143, 125158.10.1006/jcph.1998.5956CrossRefGoogle Scholar
Kopriva, D. A. & Kolias, J. H. 1996 A conservative staggerd-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244261.10.1006/jcph.1996.0091CrossRefGoogle Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657682.10.2514/8.2793CrossRefGoogle Scholar
Kramer, W., Butler, M., Bauer, G., Chadalavada, K. & Mendes, C. 2015 Blue waters parallel I/O storage sub-system. In High Performance Parallel I/O, pp. 17–32. CRC Publications, Taylor and Francis Group.Google Scholar
Laizet, S. & Lamballais, E. 2006 Direct Numerical Simulation of a Spatially Evolving Flow from an Asymmetric Wake to a Mixing Layer. Springer.CrossRefGoogle Scholar
Laizet, S., Lardeau, S. & Lamballais, E. 2010 Direct numerical simulation of a mixing layer downstream a thick splitter plate. Phys. Fluids 22, 015104.10.1063/1.3275845CrossRefGoogle Scholar
Landahl, M. T. & Mollo-Christensen, E. 1992 Turbulence and Random Processes in Fluid Mechanics, 2nd edn. Cambridge University Press.10.1017/9781139174008CrossRefGoogle Scholar
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211254.CrossRefGoogle Scholar
Li, D., Ghiasi, Z., Komperda, J. & Mashayek, F. 2016 The effect of inflow Mach number on the reattachment in subsonic flow over a backward-facing step. AIAA Paper 2016-2077.10.2514/6.2016-2077CrossRefGoogle Scholar
Li, D., Komperda, J., Ghiasi, Z., Peyvan, A. & Mashayek, F. 2019 Compressibility effects on the transition to turbulence in spatially developing plane free shear layer. Theor. Comput. Fluid Dyn. 33, 577602.10.1007/s00162-019-00507-wCrossRefGoogle Scholar
Liu, H., Wang, B., Guo, Y., Zhang, H. & Lin, W. 2013 Effects of inflow Mach number and step height on supersonic flows over a backward-facing step. Adv. Mech. Engng 2013, 011.Google Scholar
Livescu, D., Jaberi, F. A. & Madnia, C. K. 2002 The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 3566.10.1017/S0022112001006164CrossRefGoogle Scholar
Lui, C. & Lele, S. 2001 Direct numerical simulation of spatially developing, compressible, turbulent mixing layers. AIAA Paper 2001-291.Google Scholar
Mathew, J. & Basu, A. J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.10.1063/1.1480831CrossRefGoogle Scholar
McMullan, W. A., Gao, S. & Coats, C. M. 2009 The effect of inflow conditions on the transition to turbulence in large eddy simulations of spatially developing mixing layers. Intl J. Heat Fluid Flow 30, 10541066.10.1016/j.ijheatfluidflow.2009.07.005CrossRefGoogle Scholar
Mittal, A. & Girimaji, S. S. 2019 Mathematical framework for analysis of internal energy dynamics and spectral distribution in compressible turbulent flows. Phys. Rev. Fluids 4, 042601.10.1103/PhysRevFluids.4.042601CrossRefGoogle Scholar
Monkewitz, P. A. & Heurre, P. 1982 Influence of the velocity ratio on the spatial instability of mixing layers. Phys. Fluids 25, 11371143.10.1063/1.863880CrossRefGoogle Scholar
Moser, R. D. & Rogers, M. M. 1993 The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. J. Fluid Mech. 247, 275320.CrossRefGoogle Scholar
Olsen, M. G. & Dutton, J. C. 2003 Planar velocity measurements in a weakly compressible mixing layer. J. Fluid Mech. 486, 5177.10.1017/S0022112003004403CrossRefGoogle Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.10.1017/S0022112001006978CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.10.1017/S0022112088003325CrossRefGoogle Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.10.1017/S0022112087002167CrossRefGoogle Scholar
Pickett, L. M. & Ghandhi, J. B. 2002 Passive scalar mixing in a planar shear layer with laminar and turbulent inlet conditions. Phys. Fluids 14 (3), 985.10.1063/1.1445421CrossRefGoogle Scholar
Pierrehumbert, R. T. & Widnall, S. E. 1982 The two and three dimensional instabilities of a spatially periodic shear layer. J. Fluid Mech. 114, 5982.10.1017/S0022112082000044CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M., Marié, S. & Grasso, F. 2015 Early evolution of the compressible mixing layer issued from two turbulent streams. J. Fluid Mech. 777, 196218.10.1017/jfm.2015.363CrossRefGoogle Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary-conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.10.1016/0021-9991(92)90046-2CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531CrossRefGoogle Scholar
Rogers, M. M. & Moser, R. D. 1992 The three-dimensional evolution of a plane mixing layer: the Kelvin–Helmholtz rollup. J. Fluid Mech. 243, 183226.10.1017/S0022112092002696CrossRefGoogle Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903923.CrossRefGoogle Scholar
Sandham, N. D. 1989 A numerical investigation of the compressible mixing layer. PhD thesis, Stanford University, Stanford, CA.Google Scholar
Sandham, N. D. & Reynolds, W. C. 1990 Compressible mixing layer: linear theory and direct simulation. AIAA J. 28, 618624.10.2514/3.10437CrossRefGoogle Scholar
Sandham, N. D. & Reynolds, W. C. 1991 Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.10.1017/S0022112091001684CrossRefGoogle Scholar
Sandham, N. D. & Sandberg, R. D. 2009 Direct numerical simulation of the early development of a turbulent mixing layer downstream of a splitter plate. J. Turbul. 10, 117.10.1080/14685240802698774CrossRefGoogle Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.10.1017/S0022112095000085CrossRefGoogle Scholar
Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1991 a Direct simulation of compressible turbulence in a shear flow. Theor. Comput. Fluid Dyn. 2, 291305.CrossRefGoogle Scholar
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 b The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.10.1017/S0022112091000204CrossRefGoogle Scholar
Sarkar, S. & Lakshmanan, B. 1991 Application of a Reynolds stress turbulence model to the compressible shear layer. AIAA J. 29, 743–49.10.2514/3.10649CrossRefGoogle Scholar
Sharma, A., Bhaskaran, R. & Lele, S. K. 2011 Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate. AIAA Paper 2011-208.Google Scholar
Simone, A., Coleman, G. N. & Cambon, C. 1997 The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study. J. Fluid Mech. 330, 307338.10.1017/S0022112096003837CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.10.7551/mitpress/3014.001.0001CrossRefGoogle Scholar
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.10.1016/0021-9991(87)90041-6CrossRefGoogle Scholar
Thompson, K. W. 1990 Time dependent boundary conditions for hyperbolic systems 2. J. Comput. Phys. 89, 439461.10.1016/0021-9991(90)90152-QCrossRefGoogle Scholar
Vreman, A. W., Sandham, N. D. & Luo, K. H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.10.1017/S0022112096007525CrossRefGoogle Scholar
Wang, B., Wei, W., Zhang, Y., Zhang, H. & Xue, S. 2015 Passive scalar mixing in ${M}_c < 1$ planar shear layer flows. Comput. Fluids 123, 3243.10.1016/j.compfluid.2015.09.006CrossRefGoogle Scholar
Zeman, O. 1990 Dilatation dissipation: the concept and application in modeling compressible mixing layers. Phys. Fluids A 2, 178188.10.1063/1.857767CrossRefGoogle Scholar
Zhang, D., Tan, J. & Yao, X. 2019 Direct numerical simulation of spatially developing highly compressible mixing layer: structural evolution and turbulent statistics. Phys. Fluids 31, 036102.CrossRefGoogle Scholar
Zhou, Q., He, F. & Shen, M. Y. 2012 Direct numerical simulation of a spatially developing compressible plane mixing layer: flow structures and mean flow properties. J. Fluid Mech. 711, 437468.10.1017/jfm.2012.400CrossRefGoogle Scholar