Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T19:51:26.906Z Has data issue: false hasContentIssue false

Comprehensive shear stress analysis of turbulent boundary layer profiles

Published online by Cambridge University Press:  27 September 2019

Kristofer M. Womack
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Charles Meneveau
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Michael P. Schultz*
Affiliation:
Department of Naval Architecture and Ocean Engineering, United States Naval Academy, Annapolis, MD 21402, USA
*
Email address for correspondence: [email protected]

Abstract

Motivated by the need for accurate determination of wall shear stress from profile measurements in turbulent boundary layer flows, the total shear stress balance is analysed and reformulated using several well-established semi-empirical relations. The analysis highlights the significant effect that small pressure gradients can have on parameters deduced from data even in nominally zero pressure gradient boundary layers. Using the comprehensive shear stress balance together with the log-law equation, it is shown that friction velocity, roughness length and zero-plane displacement can be determined with only velocity and turbulent shear stress profile measurements at a single streamwise location for nominally zero pressure gradient turbulent boundary layers. Application of the proposed analysis to turbulent smooth- and rough-wall experimental data shows that the friction velocity is determined with accuracy comparable to force balances (approximately 1 %–4 %). Additionally, application to boundary layer data from previous studies provides clear evidence that the often cited discrepancy between directly measured friction velocities (e.g. using force balances) and those derived from traditional total shear stress methods is likely due to the small favourable pressure gradient imposed by a fixed cross-section facility. The proposed comprehensive shear stress analysis can account for these small pressure gradients and allows more accurate boundary layer wall shear stress or friction velocity determination using commonly available mean velocity and shear stress profile data from a single streamwise location.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baars, W. J., Squire, D. T., Talluru, K. M., Abbassi, M. R., Hutchins, N. & Marusic, I. 2016 Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element. Exp. Fluids 57 (5), 90.10.1007/s00348-016-2168-yGoogle Scholar
Brzek, B., Cal, R. B., Johansson, G. & Castillo, L. 2007 Inner and outer scalings in rough surface zero pressure gradient turbulent boundary layers. Phys. Fluids 19 (6), 065101.10.1063/1.2732439Google Scholar
Castro, I. P. 2007 Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585, 469485.10.1017/S0022112007006921Google Scholar
Chauhan, K. A., Monkewitz, P. A. & Nagib, H. M. 2009 Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41 (2), 021404.Google Scholar
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104, 229259.10.1023/A:1016060103448Google Scholar
Cheng, H., Hayden, P., Robins, A. G. & Castro, I. P. 2007 Flow over cube arrays of different packing densities. J. Wind Engng Ind. Aerodyn. 95 (8), 715740.10.1016/j.jweia.2007.01.004Google Scholar
Claus, J., Krogstad, P. A. & Castro, I. P. 2012 Some measurements of surface drag in urban-type boundary layers at various wind angles. Boundary-Layer Meteorol. 145 (3), 407422.10.1007/s10546-012-9736-3Google Scholar
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aero. Sci. 21 (2), 91108.Google Scholar
Coles, D. 1956 The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1 (2), 191226.10.1017/S0022112056000135Google Scholar
Ferreira, M. A., Rodriguez-Lopez, E. & Ganapathisubramani, B. 2018 An alternative floating element design for skin-friction measurement of turbulent wall flows. Exp. Fluids 59 (10), 155.10.1007/s00348-018-2612-2Google Scholar
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14 (11), L73L76.10.1063/1.1516779Google Scholar
Haritonidis, J. H. 1989 The measurement of wall shear stress. In Advances in Fluid Mechanics Measurements, pp. 229261. Springer.10.1007/978-3-642-83787-6_6Google Scholar
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.10.1017/S0022112081002279Google Scholar
Keirsbulck, L., Labraga, L., Mazouz, A. & Tournier, C. 2002 Surface roughness effects on turbulent boundary layer structures. J. Fluids Engng 124, 127135.10.1115/1.1445141Google Scholar
Klewicki, J. C., Saric, W. S., Marusic, I. & Eaton, J. K. 2007 Wall-bounded flows. In Springer Handbook of Experimental Fluid Mechanics, pp. 871907. Springer.10.1007/978-3-540-30299-5_12Google Scholar
Krogstad, P. A. & Efros, V. 2010 Rough wall skin friction measurements using a high resolution surface balance. Intl J. Heat Fluid Flow 31 (3), 429433.10.1016/j.ijheatfluidflow.2009.11.007Google Scholar
Li, J. D., Henbest, S. M. & Perry, A. E. 1986 The difficulties in the measurements of Reynolds stresses in smooth- and in rough-wall turbulent boundary layers. In 9th Australasian Fluid Mechanics Conference, Auckland, New Zealand, pp. 456459.Google Scholar
Mehdi, F., Johansson, T. G., White, C. M. & Naughton, J. W. 2014 On determining wall shear stress in spatially developing two-dimensional wall-bounded flows. Exp. Fluids 55 (1), 1656.10.1007/s00348-013-1656-6Google Scholar
Mehdi, F. & White, C. M. 2011 Integral form of the skin friction coefficient suitable for experimental data. Exp. Fluids 50 (1), 4351.10.1007/s00348-010-0893-1Google Scholar
Morrill-Winter, C., Klewicki, J., Baidya, R. & Marusic, I. 2015 Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers. Exp. Fluids 56 (12), 216.10.1007/s00348-015-2084-6Google Scholar
Morrill-Winter, C., Squire, D. T., Klewicki, J. C., Hutchins, N., Schultz, M. P. & Marusic, I. 2017 Reynolds number and roughness effects on turbulent stresses in sandpaper roughness boundary layers. Phys. Rev. Fluids 2, 054608.10.1103/PhysRevFluids.2.054608Google Scholar
Nakagawa, S. & Hanratty, T. J. 2001 Particle image velocimetry measurements of flow over a wavy wall. Phys. Fluids 13 (11), 35043507.10.1063/1.1399291Google Scholar
Perry, A. E. & Joubert, P. N. 1963 Rough-wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17 (2), 193211.10.1017/S0022112063001245Google Scholar
Perry, A. E. & Li, J. D. 1990 Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 218, 405438.10.1017/S0022112090001057Google Scholar
Placidi, M. & Ganapathisubramani, B. 2015 Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J. Fluid Mech. 782, 541566.10.1017/jfm.2015.552Google Scholar
Placidi, M. & Ganapathisubramani, B. 2018 Turbulent flow over large roughness elements: effect of frontal and plan solidity on turbulence statistics and structure. Boundary-Layer Meteorol. 167 (1), 99121.10.1007/s10546-017-0317-3Google Scholar
Placidi, M. & Ganapathisubramani, B.2019 Velocity statistics for rough-wall turbulent boundary layer flow over lego roughness elements in different layouts. University of Southampton. doi:10.5258/SOTON/D0829.Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.10.1115/1.3119492Google Scholar
Reynolds, R. T. & Castro, I. P. 2008 Measurements in an urban-type boundary layer. Exp. Fluids 45, 141156.10.1007/s00348-008-0470-zGoogle Scholar
Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aerosp. Sci. 2 (1), 195.10.1016/0376-0421(62)90014-3Google Scholar
Schlichting, H. 1979 Boundary Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Schultz, M. P. & Flack, K. A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381405.10.1017/S0022112007005502Google Scholar
Sillero, J. A., Jiménez, J. & Moser, R. D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+ ≈ 2000. Phys. Fluids 25, 105102.10.1063/1.4823831Google Scholar
Squire, D. T., Morrill-Winter, C., Hutchins, N., Schultz, M. P., Klewicki, J. C. & Marusic, I. 2016 Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. J. Fluid Mech. 795, 210240.10.1017/jfm.2016.196Google Scholar
Volino, R. J. & Schultz, M. P. 2018 Determination of wall shear stress from mean velocity and Reynolds shear stress profiles. Phys. Rev. Fluids 3, 034606.10.1103/PhysRevFluids.3.034606Google Scholar
Walker, J. M. 2014 The application of wall similarity techniques to determine wall shear velocity in smooth and rough wall turbulent boundary layers. J. Fluids Engng 136 (5), 051204.Google Scholar
Wei, T., Schmidt, R. & McMurtry, P. 2005 Comment on the Clauser chart method for determining the friction velocity. Exp. Fluids 38 (5), 695699.10.1007/s00348-005-0934-3Google Scholar
Winter, K. G. 1979 An outline of the techniques available for the measurement of skin friction in turbulent boundary layers. Prog. Aerosp. Sci. 18, 157.10.1016/0376-0421(77)90002-1Google Scholar
Wu, Y. & Christensen, K. T. 2007 Outer-layer similarity in the presence of a practical rough-wall topography. Phys. Fluids 19 (8), 085108.10.1063/1.2741256Google Scholar