Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T23:20:33.441Z Has data issue: false hasContentIssue false

Comparison of turbulence profiles in high-Reynolds-number turbulent boundary layers and validation of a predictive model

Published online by Cambridge University Press:  09 February 2017

J.-P. Laval*
Affiliation:
Univ. Lille, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille, France CNRS, FRE 3723, F-59650 Villeneuve d’Ascq, France
J. C. Vassilicos
Affiliation:
Centrale Lille, F-59000 Lille, France Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
J.-M. Foucaut
Affiliation:
Univ. Lille, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille, France Centrale Lille, F-59000 Lille, France
M. Stanislas
Affiliation:
Centrale Lille, F-59000 Lille, France
*
Email address for correspondence: [email protected]

Abstract

The modified Townsend–Perry attached-eddy model of Vassilicos et al. (J. Fluid Mech., vol. 774, 2015, pp. 324–341) combines the outer peak/plateau behaviour of root-mean-square streamwise turbulence velocity profiles and the Townsend–Perry log decay of these profiles at higher distances from the wall. This model was validated by these authors for high-Reynolds-number turbulent pipe flow data and is shown here to describe equally well, and with approximately the same parameter values, turbulent boundary layer flow data from four different facilities and a wide range of Reynolds numbers. The model has predictive value as, when extrapolated to the extremely high Reynolds numbers of the SLTEST data obtained at the Great Salt Lake Desert atmospheric test facility, it matches these data quite well.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Byrd, R. H., Lu, P. & Nocedal, J. 1995 A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comput. 16 (5), 11901208.CrossRefGoogle Scholar
Carlier, J. & Stanislas, M. 2005 Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J. Fluid Mech. 535, 143188.CrossRefGoogle Scholar
Foucaut, J. M., Kostas, J. & Stanislas, M. 2006 Wall shear stress measurement using stereoscopic PIV. In 12th International Symposium on Flow Visualization, Electronic Proceedings, Optimage Ltd, Edinburgh (ISBN 0-9533991-8-4).Google Scholar
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108, 094501.Google Scholar
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2013 Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow. J. Fluid Mech. 728, 376395.CrossRefGoogle Scholar
Hutchins, N., Kapil, C., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145, 273306.Google Scholar
Marusic, I., Chauhan, K. A., Kulandaivelu, V. & Hutchins, N. 2015 Evolution of zero-pressure-gradient boundary layers from different tripping conditions. J. Fluid Mech. 783, 379411.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31, 418428.Google Scholar
Marusic, I., Monty, J. P., Hultmark, M. & Smits, A. J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.Google Scholar
Metzger, M. M., Mckeon, B. J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. Lond. A 365, 859876.Google Scholar
Morrisson, J. F., Mckeon, B. J., Jiang, W. & Smits, A. J. 2004 Scaling of the streamwise velocity component in turbulent pipe flow. J. Fluid Mech. 508, 99131.Google Scholar
Perry, A. E. & Abell, C. J. 1977 Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes. J. Fluid Mech. 79, 785799.Google Scholar
Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.Google Scholar
Smits, A. J, Monty, J., Hultmark, M., Bailey, S. C. C., Hutchins, N. & Marusic, I. 2011 Spatial resolution correction for wall-bounded turbulence measurements. J. Fluid Mech. 676, 4153.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Vallikivi, M., Ganapathissubramani, B. & Smits, A. J. 2014 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.Google Scholar
Vallikivi, M., Hultmark, M. & Smits, A. J. 2015 Turbulent boundary layer statistics at very high Reynolds numbers. J. Fluid Mech. 779, 371389.CrossRefGoogle Scholar
Vassilicos, J. C., Laval, J.-P., Foucaut, J.-M. & Stanislas, M. 2015 The streamwise turbulence intensity in the intermediate layer of turbulent pipe flow. J. Fluid Mech. 774, 324341.Google Scholar
Vincenti, P., Klewicki, J., Morrill-Winter, C., White, C. M. & Wosnik, M. 2013 Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number. Exp. Fluids 54 (1629), 113.Google Scholar