Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T04:55:33.693Z Has data issue: false hasContentIssue false

Colliding drops as coalescing and fragmenting liquid springs

Published online by Cambridge University Press:  03 February 2017

C. Planchette*
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Inffeldgasse 25/F, 8010 Graz, Austria
H. Hinterbichler
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Inffeldgasse 25/F, 8010 Graz, Austria
M. Liu
Affiliation:
Center of Smart Interfaces, Darmstadt University of Technology, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
D. Bothe
Affiliation:
Center of Smart Interfaces, Darmstadt University of Technology, Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
G. Brenn
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Inffeldgasse 25/F, 8010 Graz, Austria
*
Email address for correspondence: [email protected]

Abstract

A universal modelling approach of drop fragmentation after head-on drop collisions is presented. In this approach, the colliding drops are seen as liquid springs that coalesce, compress and relax, leading the merged drop to break up if it reaches a critical aspect ratio. Combining energetic balance of the compression and relaxation phases with a Rayleigh-like criterion, we deduce the fragmentation threshold velocity for the collision of two and three drops of the same liquid and of two drops of immiscible liquids. Predictions and experimental results obtained for these three kinds of collisions using various liquids and drop sizes are found to be in good agreement over a wide domain whose boundaries are discussed.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183204.Google Scholar
Bazilevskii, A. V., Voronkov, S. I., Entov, V. M. & Rozhkov, A. N. 1981 Orientational effects in the decomposition of streams and strands of diluted polymer solutions. Sov. Phys. Dokl. 26, 333335.Google Scholar
Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.Google Scholar
Brazier-Smith, P. R., Jennings, S. G. & Latham, J. 1972 The interaction of falling water drops: coalescence. Proc. R. Soc. Lond. 326, 393408.Google Scholar
Chen, R.-H. & Chen, C.-T. 2006 Collisions between immiscible drops with large surface tension difference: diesel oil and water. Exp. Fluids 41, 453461.Google Scholar
Dai, M. & Schmidt, D. P. 2005 Numerical simulation of head-on droplet collision: effect of viscosity on maximum deformation. Phys. Fluids 17, 041701.CrossRefGoogle Scholar
Focke, C. & Bothe, D. 2011 Computational analysis of binary collisions of shear-thinning droplets. J. Non-Newtonian Fluid Mech. 166, 799810.Google Scholar
Focke, C. & Bothe, D. 2012 Direct numerical simulation of binary off-center collisions of shear thinning droplets at high Weber numbers. Phys. Fluids 24, 073105.Google Scholar
Focke, C., Kuschel, M., Sommerfeld, M. & Bothe, D. 2013 Collision between high and low viscosity droplets: direct numerical simulations and experiments. Intl J. Multiphase Flow 56, 8192.CrossRefGoogle Scholar
Gotaas, C., Havelka, P., Jakobsen, H. A., Svendsen, H. F., Hase, M., Roth, N. & Weigand, B. 2007 Effect of viscosity on droplet–droplet collision outcome: experimental study and numerical comparison. Phys. Fluids 19 (10), 102106.Google Scholar
Hinterbichler, H., Planchette, C. & Brenn, G. 2015 Ternary drop collisions. Exp. Fluids 56, 190.Google Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.Google Scholar
Jiang, Y. J., Umemura, A. & Law, C. K. 1992 An experimental investigation in the collision behaviour of hydrocarbon droplets. J. Fluid Mech. 234, 171190.CrossRefGoogle Scholar
Lafaurie, B., Nardone, C., Scardovelli, R., Zaleski, S. & Zanetti, G. 1994 Modelling merging and fragmentation in multiphase flows with surfer. J. Comput. Phys. 113, 134147.Google Scholar
Liu, M. & Bothe, D. 2016 Numerical study of head-on droplet collisions at high Weber numbers. J. Fluid Mech. 789, 785805.Google Scholar
Lycett-Brown, D., Luo, K. H., Liu, R. & Lv, P. 2014 Binary droplet collision simulations by a multiphase cascaded lattice Boltzmann method. Phys. Fluids 26 (2), 023303.Google Scholar
Montgomery, D. N. 1970 Collision and coalescence of water drops. J. Atmos. Sci. 28, 291293.Google Scholar
Nikolopoulos, N., Nikas, K.-S. & Bergeles, G. 2009 A numerical investigation of central binary collision of droplets. Comput. Fluids 38, 11911202.Google Scholar
Nobari, M. R., Jan, Y.-J. & Tryggvason, G. 1996 Head-on collision of drops – a numerical investigation. Phys. Fluids 8, 2942.Google Scholar
Okumura, K., Chevy, F., Richard, D., Quéré, D. & Clanet, C. 2003 Water spring: a model for bouncing drops. Europhys. Lett. 62 (2), 237243.Google Scholar
Planchette, C., Lorenceau, E. & Brenn, G. 2012 The onset of fragmentation in binary liquid drop collisions. J. Fluid Mech. 702, 525.Google Scholar
Qian, J. & Law, C. K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 5980.Google Scholar
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 7197.Google Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Surface phenomena: contact time of a bouncing drop. Nature 417 (6891), 811.Google Scholar
Roisman, I. V. 2004 Dynamics of inertia-dominated binary drop collisions. Phys. Fluids 16 (9), 34383449.Google Scholar
Roisman, I. V. 2009a Inertia dominated drop collisions. i. On the universal flow in the lamella. Phys. Fluids 21 (5), 052103.Google Scholar
Roisman, I. V. 2009b Inertia-dominated drop collisions. ii. An analytical solution of the Navier–Stokes equations for spreading viscous film. Phys. Fluids 21 (5), 052104.Google Scholar
Roisman, I. V., Planchette, C., Lorenceau, E. & Brenn, G. 2011 Binary collisions of drops of immiscible liquids. J. Fluid Mech. 690, 512535.Google Scholar
Saroka, M. D., Ashgriz, N. & Movassat, M. 2012 Numerical investigation of head-on binary drop collisions in a dynamically inert environment. J. Appl. Fluid Mech. 5 (1), 2337.Google Scholar
Stone, H. A. & Leal, L. G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 198, 399427.Google Scholar
Symon, K. R. 1971 Mechanics, 3rd edn. Addison-Wesley.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid ii. Waves on fluid sheets. Proc. R. Soc. Lond. A 263, 296312.Google Scholar
Willis, K. D. & Orme, M. 2000 Experiments on the dynamics of droplet collisions in a vacuum. Exp. Fluids 29, 347358.Google Scholar
Willis, K. D. & Orme, M. 2003 Binary droplet collisions in a vacuum environment: an experimental investigation on the role of viscosity. Exp. Fluids 34, 2841.Google Scholar
Yeo, Y., Chen, A. U., Basaran, O. A. & Park, K. 2004 Solvent exchange method: a novel microencapsulation technique using dual microdispensers. Pharmaceut. Res. 21, 14191427.Google Scholar