Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T00:58:52.815Z Has data issue: false hasContentIssue false

Coherent structures in canopy edge flow: a large-eddy simulation study

Published online by Cambridge University Press:  10 July 2009

S. DUPONT*
Affiliation:
INRA, UR 1263, EPHYSE, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon Cedex, France
Y. BRUNET
Affiliation:
INRA, UR 1263, EPHYSE, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon Cedex, France
*
Email address for correspondence: [email protected]

Abstract

Large coherent structures over vegetation canopies are responsible for a substantial part of the turbulent transfer of momentum, heat and mass between the canopy and the atmosphere. As forested landscapes are often fragmented, edge regions may be of importance in turbulent transfer. The development of coherent structures from the leading edge of a forest is investigated here for the first time. For this purpose, the turbulent flow over a clearing–forest pattern is simulated using the Advanced Regional Prediction System (ARPS). In previous studies the code has been modified so as to simulate turbulent flows at very fine scale (0.1h, where h is the mean canopy height) within and above heterogeneous vegetation canopies, using a large-eddy simulation (LES) approach. Validations have also been performed over homogeneous forest canopies and over a simple forest–clearing–forest pattern, against field and wind-tunnel measurements. Here, a schematic picture of the development of coherent eddies downstream from the leading edge of a forest is extracted from the mean vorticity components, the Q-criterion field, the cross-correlation of the wind velocity components and the length and separation length scales of coherent structures, determined by using a wavelet transform. This schematic picture shows strong similarities with the development of coherent structures observed in a mixing layer, with four different regions: (i) close to the edge, Kelvin–Helmholtz instabilities develop when a strong wind gust hits the canopy; (ii) these instabilities roll over to form transverse vortices from around 3h downstream from the edge, characterized by a length scale close to the depth of the internal boundary layer that develops from the canopy edge; (iii) secondary instabilities destabilize these rollers and increase the vertical and streamwise vorticity components from around 6h, and two counter-rotating streamwise vortices appear; (iv) at about 9h the initial rollers have become complex three-dimensional coherent structures, with spatially constant mean length and separation length scales. These four stages of development occur closer to the edge with increasing canopy density. While this average picture of the development of coherent structures is similar to that observed in a mixing layer, the analysis of instantaneous fields shows that coherent structures behind the leading edge appear as resulting from the ‘branching’ of tubes localized in regions of low pressure, where their cores are characterized by high values of enstrophy and Q-criterion.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asner, G. P., Scurlock, J. M. O. & Hicke, J. A. 2003 Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecol. Biogeogr. 12 (3), 191205.CrossRefGoogle Scholar
Baldocchi, D. D. & Meyers, T. P. 1988 Turbulence structure in a deciduous forest. Boundary-Layer Meteorol. 43, 345364.CrossRefGoogle Scholar
Belcher, S. E., Finnigan, J. J. & Harman, I. N. 2008 Flows through forest canopies in complex terrain. Ecol. Appl. 18 (6), 14361453.CrossRefGoogle ScholarPubMed
Belcher, S. E., Jerram, N. & Hunt, J. C. R. 2003 Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 488, 369398.CrossRefGoogle Scholar
Bou-Zeid, E., Meneveau, C. & Parlange, M. B. 2004 Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour. Res. 40 (2), W02505.CrossRefGoogle Scholar
Brunet, Y. & Irvine, M. R. 2000 The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol. 94 (1), 139163.CrossRefGoogle Scholar
Cassiani, M., Katul, G. G. & Albertson, J. D. 2008 The effects of canopy leaf area index on airflow across forest edges: large-eddy simulation and analytical results. Boundary-Layer Meteorol. 126 (3), 433460.CrossRefGoogle Scholar
Chen, J. M. T., Novak, M. D. & Adams, R. 1995 A wind tunnel study of turbulent air flow in forest clearcuts. In Wind and Trees (ed. Coutts, M. P & Grace, J.), pp. 7197. Cambridge University Press.CrossRefGoogle Scholar
Collineau, S. & Brunet, Y. 1993 a Detection of turbulent coherent motions in a forest canopy. Part 1. Wavelet analysis. Boundary-Layer Meteorol. 65 (4), 357379.CrossRefGoogle Scholar
Collineau, S. & Brunet, Y. 1993 b Detection of turbulent coherent motions in a forest canopy. Part 2. Time-scales and conditional averages. Boundary-Layer Meteorol. 66 (1–2), 4973.CrossRefGoogle Scholar
Comte, P., Lesieur, M. & Fouillet, Y. 1989 Coherent structures of mixing layers in large-eddy simulation. In Topological Fluid Dynamics (ed. Moffatt, H. K. & Tsinober, A.). Cambridge University Press, 649658.Google Scholar
Comte, P., Lesieur, M. & Lamballais, E. 1992 Large-scale and small-scale stirring of vorticity and a passive scalar in a 3-d temporal mixing layer. Phys. Fluids A 4 (12), 27612778.CrossRefGoogle Scholar
Cucitore, R., Quadrio, M. & Baron, A. 1999 On the effectiveness and limitations of local criteria for the identification of a vortex. Eur. J. Mech. B 18 (2), 261282.CrossRefGoogle Scholar
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large structure dynamics and entrainment. J. Fluid Mech. 78, 535560.CrossRefGoogle Scholar
Dubief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1, 011.CrossRefGoogle Scholar
Dupont, S. & Brunet, Y. 2008 a Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol. 126, 5171.CrossRefGoogle Scholar
Dupont, S. & Brunet, Y. 2008 b Influence of foliar density profile on canopy flow: a large-eddy simulation study. Agric. Forest Meteorol. 148, 976990.CrossRefGoogle Scholar
Dupont, S., Brunet, Y. & Finnigan, J. J. 2008 Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Quart. J. R. Meteorol. Soc. 134, 19111929.CrossRefGoogle Scholar
Dwyer, M. J., Patton, E. G. & Shaw, R. H. 1997 Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 84 (1), 2343.CrossRefGoogle Scholar
Farge, M. & Schneider, K. 2006 Wavelets: application to turbulence. In Encyclopedia of Mathematics Physics (ed. Françoise, J.-P., Naber, G. & Tsun, T. S.), pp. 408420. Elsevier.CrossRefGoogle Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.CrossRefGoogle Scholar
Finnigan, J. J. & Brunet, Y. 1995 Turbulent airflow in forests on flat and hilly terrain. In Wind and Trees (ed. Coutts, M. P. & Grace, J.), pp. 340. Cambridge University Press.CrossRefGoogle Scholar
Finnigan, J. J. & Shaw, R. H. 2000 A wind-tunnel study of airflow in waving wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol. 96 (1–2), 211255.CrossRefGoogle Scholar
Finnigan, J. J., Shaw, R. H. & Patton, E. G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. In press.CrossRefGoogle Scholar
Flesch, T. K. & Wilson, J. D. 1999 Wind and remnant tree sway in forest cutblocks. Part 1. Measured winds in experimental cutblocks. Agric. Forest Meteorol. 93 (4), 229242.CrossRefGoogle Scholar
Gao, W., Shaw, R. H. & Paw U, K. T. 1989 Observation of organized structures in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol. 47, 349377.CrossRefGoogle Scholar
Gash, J. H. C. 1986 Observations of turbulence downwind of a forest–heath interface. Boundary-Layer Meteorol. 36, 227237.CrossRefGoogle Scholar
Ghisalberti, M. & Nepf, H. M. 2002 Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. 107 (C2), 3011.Google Scholar
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.CrossRefGoogle Scholar
Irvine, M. R., Gardiner, B. A. & Hill, M. K. 1997 The evolution of turbulence across a forest edge. Boundary-Layer Meteorol. 84 (3), 467496.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Judd, M. J., Raupach, M. R. & Finnigan, J. J. 1996 A wind tunnel study of turbulent flow around single and multiple windbreaks. Part 1. Velocity fields. Boundary-Layer Meteorol. 80 (1–2), 127165.CrossRefGoogle Scholar
Kanda, M. & Hino, M. 1994 Organized structures in developing turbulent-flow within and above a plant canopy, using a large-eddy simulation. Boundary-Layer Meteorol. 68 (3), 237257.CrossRefGoogle Scholar
Katul, G. G., Schieldge, J., Hsieh, C. I. & Vidakovic, B. 1998 Skin temperature perturbations induced by surface layer turbulence above a grass surface. Water Resour. Res. 34 (5), 12651274.CrossRefGoogle Scholar
Lee, X. 2000 Air motion within and above forest vegetation in non-ideal conditions. Forest Ecol. Manage. 135 (1–3), 318.CrossRefGoogle Scholar
Lesieur, M., Begou, P., Briand, E., Danet, A., Delcayre, F. & Aider, J. L. 2003 Coherent-vortex dynamics in large-eddy simulations of turbulence. J. Turbul. 4, 016.CrossRefGoogle Scholar
Liu, J., Chen, J. M., Black, T. A. & Novak, M. D. 1996 E-epsilon modelling of turbulent air flow downwind of a model forest edge. Boundary-Layer Meteorol. 77 (1), 2144.CrossRefGoogle Scholar
Lu, C. H. & Fitzjarrald, D. R. 1994 Seasonal and diurnal variations of coherent structures over a deciduous forest. Boundary-Layer Meteorol. 69, 4369.CrossRefGoogle Scholar
Morse, A. P., Gardiner, B. A. & Marshall, B. J. 2002 Mechanisms controlling turbulence development across a forest edge. Boundary-Layer Meteorol. 103 (2), 227251.CrossRefGoogle Scholar
Nepf, H. & Ghisalberti, M. 2008 Flow and transport in channels with submerged vegetation. Acta Geophys. 56 (3), 753777.CrossRefGoogle Scholar
Nieveen, J. P., El-Kilani, R. M. M. & Jacobs, A. F. G. 2001 Behaviour of the static pressure around a tussock grassland–forest interface. Agric. Forest Meteorol. 106 (4), 253259.CrossRefGoogle Scholar
Patton, E. G., Shaw, R. H., Judd, M. J. & Raupach, M. R. 1998 Large-eddy simulation of windbreak flow. Boundary-Layer Meteorol. 87 (2), 275306.CrossRefGoogle Scholar
Paw, K. T., Brunet, Y., Collineau, S., Shaw, R. H., Maitini, T., Qiu, J. & Hipps, L. 1992 On coherent structures in turbulence above and within agricultural plant canopies. Agric. Forest Meteorol. 61 (1–2), 5568.CrossRefGoogle Scholar
Pénelon, T., Calmet, I. & Mironov, D. V. 2001 Micrometeorological simulations over a complex terrain with submeso: a model study using a novel pre-processor. Intl J. Environ. Pollut. 16, 583602.CrossRefGoogle Scholar
Qiu, J., Paw, U. K. & Shaw, R. H. 1995 Pseudo-wavelet analysis of turbulence patterns in three vegetation layers. Boundary-Layer Meteorol. 72 (1–2), 177–204.CrossRefGoogle Scholar
Quine, C. P., Coutts, M. P., Gardiner, B. & Pyatt, D. G. 1995 Forests and wind: management to minimize damage. In Forestry Commission Bulletin 114. (ed. Gardiner, B.), HMSO Publications Centre.Google Scholar
Raupach, M. R., Antonia, R. & Rajagoplan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.CrossRefGoogle Scholar
Raupach, M. R., Bradley, E. F. & Ghadiri, H. 1987 A wind tunnel investigation into aerodynamic effect of forest clearings on the nesting of Abbott's Booby on Christmas Island. Tech Rep. CSIRO Centre for Environmental Mechanics.Google Scholar
Raupach, M. R., Coppin, P. A. & Legg, B. J. 1986 Experiments on scalar dispersion within a plant canopy, Part 1. The turbulence structure. Boundary-Layer Meteorol. 35, 2152.CrossRefGoogle Scholar
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1989 Coherent eddies and turbulence in vegetation canopies. In Fourth Australian Conf. on Heat and Mass Transfer. Christchurch, New Zealand.Google Scholar
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78 (3–4), 351382.CrossRefGoogle Scholar
Raynor, G. S. 1971 Wind and temperature structure in a coniferous forest and a contiguous field. Forest Sci. 17, 351363.Google Scholar
Rogers, M. M. & Moser, R. D. 1994 Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6 (2), 903923.CrossRefGoogle Scholar
Schneider, K. & Farge, M. 2003 Extraction of coherent vortex tubes in a 3d mixing layer. In Tubes, Sheets and Singularities in Fluid Dynamics (ed. Bajer, K. & Moffat, H. H.), pp. 211216. Kluwer.Google Scholar
Schneider, K., Farge, M., Pellegrino, G. & Rogers, M. M. 2005 Coherent vortex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets. J. Fluid Mech. 534, 3966.CrossRefGoogle Scholar
Shaw, R. H., Brunet, Y., Finnigan, J. J. & Raupach, M. R. 1995 A wind tunnel study of air flow in waving wheat: two-point velocity statistics. Boundary-Layer Meteorol. 76 (4), 349376.CrossRefGoogle Scholar
Shaw, R. H., Finnigan, J. J., Patton, E. G. & Fitzmaurice, L. 2006 Eddy structure near the plant canopy interface. In 26th Conf. on Boundary Layers and Turbulence. San Diego, California.Google Scholar
Shaw, R. H., Hartog, D. & Neumann, H. H. 1988 Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Boundary-Layer Meteorol. 45, 391409.CrossRefGoogle Scholar
Shaw, R. H. & Schumann, U. 1992 Large-eddy simulation of turbulent-flow above and within a forest. Boundary-Layer Meteorol. 61 (1–2), 4764.CrossRefGoogle Scholar
Shaw, R. H. & Zhang, X. J. 1992 Evidence of pressure-forced turbulent-flow in a forest. Boundary-Layer Meteorol. 58 (3), 273288.CrossRefGoogle Scholar
Shen, S. H. & Leclerc, M. Y. 1997 Modelling the turbulence structure in the canopy layer. Agric. Forest Meteorol. 87 (1), 325.CrossRefGoogle Scholar
Su, H. B., Shaw, R. H. & Paw, U. K. T. 2000 Two-point correlation analysis of neutrally stratified flow within and above a forest from large-eddy simulation. Boundary-Layer Meteorol. 94 (3), 423460.CrossRefGoogle Scholar
Su, H. B., Shaw, R. H., Paw, U. K. T., Moeng, C. H. & Sullivan, P. P. 1998 Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol. 88 (3), 363397.CrossRefGoogle Scholar
Turner, B. J., Leclerc, M. Y., Gauthier, M., Moore, K. E. & Fitzjarrald, D. R. 1994 Identification of turbulence structures above a forest canopy using a wavelet transform. J. Geophys. Res. 99 (D1), 19191926.CrossRefGoogle Scholar
Watanabe, T. 2004 Large-eddy simulation of coherent turbulence structures associated with scalar ramps over plant canopies. Boundary-Layer Meteorol. 112 (2), 307341.CrossRefGoogle Scholar
Winant, C. D. & Browand, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237255.CrossRefGoogle Scholar
Xue, M., Droegemeier, K. K. & Wong, V. 2000 The Advanced Regional Prediction System (ARPS) – a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part 1. Model dynamics and verification. Meteorol. Atmos. Phys. 75 (3–4), 161193.CrossRefGoogle Scholar
Xue, M., Droegemeier, K. K., Wong, V., Shapiro, A. & Brewster, K. 1995 ARPS Version 4.0 User's Guide. Center for Analysis and Prediction of Storms, University of Oklahoma.Google Scholar
Xue, M., Droegemeier, K. K., Wong, V., Shapiro, A., Brewster, K., Carr, F., Weber, D., Liu, Y. & Wang, D. 2001 The Advanced Regional Prediction System (ARPS) – a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part 2. Model physics and applications. Meteorol. Atmos. Phys. 76 (3–4), 143165.CrossRefGoogle Scholar
Yang, B., Morse, A. P., Shaw, R. H. & Paw, U. K. T. 2006 a Large-eddy simulation of turbulent flow across a forest edge. Part 2. Momentum and turbulent kinetic energy budgets. Boundary-Layer Meteorol. 121 (3), 433457.CrossRefGoogle Scholar
Yang, B., Raupach, M. R., Shaw, R. H., Tha, K., Paw, U. & Morse, A. P. 2006 b Large-eddy simulation of turbulent flow across a forest edge. Part 1. Flow statistics. Boundary-Layer Meteorol. 120 (3), 377412.CrossRefGoogle Scholar