Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T18:32:53.374Z Has data issue: false hasContentIssue false

Buoyancy-induced, columnar vortices

Published online by Cambridge University Press:  13 September 2016

Mark W. Simpson*
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Ari Glezer
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
Email address for correspondence: [email protected]

Abstract

A buoyancy-induced, columnar vortex is deliberately triggered in the unstably stratified air layer over a heated ground plane and is anchored within, and scales with, an azimuthal array of vertical, stator-like planar flow vanes that form an open-top enclosure and impart tangential momentum to the radially entrained air flow. The columnar vortex comprises three coupled primary flow domains: a spiraling surface momentum boundary layer of ground-heated air, an inner thermally driven vertical vortex core and an outer annular flow that is bounded by a helical shear layer and the vanes along its inner and outer edges, respectively, and by the spiraling boundary layer from below. In common with free buoyant columnar (dust devil) vortices that occur spontaneously over solar-heated terrain in the natural environment, the stationary anchored vortex is self-sustained by the conversion of the potential energy of the entrained surface-heated air layer to the kinetic energy of the induced vortical flow that persists as long as the thermal stratification is maintained. This conversion occurs as radial vorticity produced within the surface boundary layer is tilted vertically near the vortex centreline by the buoyant air to form the core of the columnar vortex. The structure and dynamics of the buoyant vortex are investigated using high-resolution stereo particle image velocimetry with specific emphasis on the evolution of the vorticity distributions and their effects on the characteristic scales of the ensuing vortex and on the kinetic energy of the induced flow.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G. L.1981 Boundary layers in laminar vortex flows. PhD thesis, Purdue University.Google Scholar
Barcilon, A. 1967a A theoretical and experimental model for a dust devil. J. Atmos. Sci. 24, 453466.2.0.CO;2>CrossRefGoogle Scholar
Barcilon, A. 1967b Vortex decay above a stationary boundary. J. Fluid Mech. 27, 155175.CrossRefGoogle Scholar
Batchelor, G. K. 1954 Heat convection and buoyancy effects in fluids. Q. J. R. Meteorol. Soc. 80, 339358.CrossRefGoogle Scholar
Brady, R. H. & Szoke, E. J. 1989 A case study of nonmesocyclone tornado development in northeast Colorado: similarities to waterspout formation. Mon. Weath. Rev. 117, 843856.2.0.CO;2>CrossRefGoogle Scholar
van den Bremer, T. S. & Hunt, G. R. 2014 Two-dimensional planar plumes and fountains. J. Fluid. Mech. 750, 210244.CrossRefGoogle Scholar
Carroll, J. J. & Ryan, J. A. 1970 Atmospheric vorticity and dust devil rotation. J. Geophys. Res. 20, 51795184.CrossRefGoogle Scholar
Cermak, J. E. & Arya, S. P. S. 1970 Problems of atmospheric shear flows and their laboratory simulation. Boundary-Layer Meteorol. 1, 4060.CrossRefGoogle Scholar
Chigier, N. A. & Chervinsky, A. 1967 Experimental investigation of swirling vortex motion in jets. Trans. ASME J. Appl. Mech. 43, 443451.CrossRefGoogle Scholar
Fiedler, B. H. 1998 Wind-speed limits in numerically simulated tornadoes with suction vorticies. Q. J. R. Meteorol. Soc. 124, 23772392.Google Scholar
Fitzjarrald, D. E. 1973a A field investigation of dust devils. J. Appl. Meteorol. 12, 808813.2.0.CO;2>CrossRefGoogle Scholar
Fitzjarrald, D. E. 1973b A laboratory simulation of convective vortices. J. Atmos. Sci. 30, 894902.2.0.CO;2>CrossRefGoogle Scholar
Gaya, M., Homar, V., Romero, R. & Ramis, C. 2001 Tornadoes and waterspouts in the Balearic islands: phenomena and environment characterization. Atmos. Res. 56, 253267.CrossRefGoogle Scholar
Glezer, A. & Simpson, M.2014 Power generation using buoyancy-induced vortices. U.S. Patent 8875509.Google Scholar
Greeley, R., Balme, M. R., Iversen, J. D., Metzger, S., Mickelson, R., Phoreman, J. & White, B. 2003 Martian dust devils: laboratory simulations of particle threshold. J. Geophys. Res. 108, 7-1–7-12.Google Scholar
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.CrossRefGoogle Scholar
Hess, G. D. & Spillane, K. T. 1990 Characteristics of dust devils in Australia. J. App. Met. 29, 498507.2.0.CO;2>CrossRefGoogle Scholar
Holton, J. R. 2004 An Introduction to Dynamic Meteorology, 4th edn. Elsevier Academic.Google Scholar
Honohan, A. M.2003 The interaction of synthetic jets with cross flow and modification of aerodynamic surfaces. PhD thesis, Georgia Institute of Technology.Google Scholar
Hunt, G. R. & Kaye, N. G. 2001 Virtual origin correction for lazy turbulent plumes. J. Fluid Mech. 435, 337396.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kaimal, J. C. & Busigner, J. A. 1970 Case studies of a convective plume and a dust devil. J. Appl. Meteorol. 9, 612620.2.0.CO;2>CrossRefGoogle Scholar
Kanak, K. M., Lilly, D. K. & Snow, J. T. 2000 The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126, 27892810.CrossRefGoogle Scholar
Kanak, K. M. 2005 Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131, 12711292.CrossRefGoogle Scholar
Kurgansky, M. V. 2006 Size distribution of dust devils in the atmosphere. Atmos. Ocean. Phys. 42, 319325.CrossRefGoogle Scholar
Kurgansky, M. V., Montecinos, A., Villagran, V. & Metzger, S. M. 2011 Micrometeorological conditions for dust-devil occurrence in Atacama desert. Boundary-Layer Meteorol. 138, 285298.CrossRefGoogle Scholar
Lee, S. L. 1965 Axisymmetrical turbulent swirling jet. J. Appl. Mech. 32, 258262.CrossRefGoogle Scholar
Lee, S. L. 1966 Axisymmetrical turbulent swirling natural-convection plume. Part 2. Experimental investigation. J. Appl. Mech. 33, 656661.CrossRefGoogle Scholar
Liu, X. & Katz, J. 2006 Instantaneous pressure and material acceleration measurements using a four-exposure PIV system. Exp. Fluids 41, 227240.CrossRefGoogle Scholar
Logan, S. E. 1971 An approach to the dust devil vortex. AIAA J. 9, 660665.CrossRefGoogle Scholar
Lucier, R. E.1981 System for converting solar heat to electrical energy. U.S. Patent 4275309.Google Scholar
Maxworthy, T. 1973 A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices. J. Atmos. Sci. 30, 17171722.2.0.CO;2>CrossRefGoogle Scholar
Maxworthy, T. 1981 The Laboratory Modelling of Atmospheric Vortices: A Critical Review. Springer.Google Scholar
Michaud, L. M. 1999 Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere. Appl. Energy 62, 241251.CrossRefGoogle Scholar
Morton, B. R. 1966 Geophysical vortices. Prog. Aeronaut. Sci. 7, 145194.CrossRefGoogle Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Mullen, J. B. & Maxworthy, T. 1977 A laboratory model of dust devil vortices. Dyn. Atmos. Oceans 1, 181214.CrossRefGoogle Scholar
Neakrase, L. D. V. & Greeley, R. 2010 Dust devils in the laboratory: effect of surface roughness on vortex dynamics. J. Geophys. Res. 115, E05003.Google Scholar
Niino, H., Nakanishi, M. & Tanaka, R.2006 On the conditions for a dust devil genesis in a large eddy simulation. 4th International Symposium on Computational Wind Engineering, Yokohama, Japan. IAWE.Google Scholar
Ohno, H. & Takemi, T. 2010 Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 11, 2732.CrossRefGoogle Scholar
Pathare, A. V., Balme, M. R., Meztger, S. M., Spiga, A., Towner, M. C. & Renno, N. O. 2010 Assessing the power law hypothesis for the size – frequency distribution of terrestrial and martian dust devils. Icarus 209, 851853.CrossRefGoogle Scholar
Raffel, M., Willert, C. E., Wereley, S. T. & Kompenhans, J. 2007 Post-processing of PIV Data: Particle Image Velocimetry. Springer.CrossRefGoogle Scholar
Rajaratnam, N. 1976 Developments in Water Science 5: Turbulent Jets. Elsevier.Google Scholar
Renno, N. O. 2004 MATADOR 2002: A pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109, E07001.Google Scholar
Renno, N. O. & Bluestein, H. B. 2001 A simple theory for waterspouts. J. Atmos. Sci. 58, 927932.2.0.CO;2>CrossRefGoogle Scholar
Renno, N. O., Burkett, M. L. & Larkin, M. P. 1998 A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 32443252.2.0.CO;2>CrossRefGoogle Scholar
Rotunno, R. 1980 Vorticity dynamics of a convective swirling boundary layer. J. Fluid Mech. 97, 623640.CrossRefGoogle Scholar
Rotunno, R. 2013 The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech. 45, 5984.CrossRefGoogle Scholar
Ryan, J. A. 1972 Relation of dust devil frequency and diameter to atmospheric temperature. J. Geophys. Res. 77, 71337137.CrossRefGoogle Scholar
Simpson, M. W. & Glezer, A.2012 Electric power generation using buoyancy-induced vortices. In 10th International Energy Conversion Engineering Conference, Atlanta, Georgia. Paper no. AIAA 2012-4243. AIAA.CrossRefGoogle Scholar
Simpson, M. W., Pearlstein, A. J. & Glezer, A.2012 Power generation by concentrated solar-heated air using buoyancy-induced vortices. In ASME 2012 6th International Conference on Energy Sustainability, Parts A and B, San Diego, California. Paper no. ES2012-91437, pp. 585–593. ASME.CrossRefGoogle Scholar
Simpson, M. W., Pearlstein, A. J. & Glezer, A. 2013a Electric power generation using buoyancy-induced vorticies. Renew. Energy Power Qual. J. 1, 847851.CrossRefGoogle Scholar
Simpson, M. W., Reeve, H. M., Pearlstein, A. J. & Glezer, A.2013b Electric power generation using buoyancy-induced vortices sustained by entrained solar-heated air. In ASME 2013 7th International Conference on Energy Sustainability, Minneapolis, Minnesota. Paper no. ES2013-18352. ASME.CrossRefGoogle Scholar
Sinclair, P. C. 1969 General characteristics of dust devils. J. App. Met. 8, 3245.2.0.CO;2>CrossRefGoogle Scholar
Sinclair, P. C. 1973 The lower structure of dust devils. J. Atmos. Sci. 30, 15991619.2.0.CO;2>CrossRefGoogle Scholar
Smith, R. K. & Leslie, L. M. 1976 Thermally driven vortices: a numerical study with application to dust-devil dynamics. Q. J. R. Meteorol. Soc. 102, 791804.Google Scholar
Snow, J. T. 1982 A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys. 20, 953964.CrossRefGoogle Scholar
Taylor, G. I.1945 Dynamics of a mass of hot gas rising in air. U.S. Atomic Energy Commission MDDC 919. LADC 276.Google Scholar
Turner, J. S. 1962 The ‘Starting Plume’ in neutral surroundings. J. Fluid Mech. 13, 356368.CrossRefGoogle Scholar
Turner, J. S. 1969 Buoyant plumes and thermals. Annu. Rev. Fluid Mech. 1, 2944.CrossRefGoogle Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Varaksin, A. Y., Romash, M. E. & Kopeitsev, V. N. 2011 Tornado-like non-stationary vortices: experimental modelling under laboratory conditions. Nat. Sci. 3, 907913.Google Scholar
Wilson, T. & Rotunno, R. 1982 Numerical simulation of a laminar vortex flow. In Computational Methods and Experimental Measurements, pp. 203215. Springer.CrossRefGoogle Scholar
Zhang, M., Luo, X., Li, T., Zhang, L., Meng, X., Kase, K., Wada, S., Yu, C. & Gu, Z. 2015 From dust devil to sustainable swirling wind energy. Sci. Rep. 5, 15.Google ScholarPubMed
Zhao, Y. Z., Gu, X. L., Yu, Y. Z., Ge, Y., Li, Y. & Feng, X. 2004 Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42, 6184.CrossRefGoogle Scholar