Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T00:31:36.736Z Has data issue: false hasContentIssue false

Bubble-driven liquid flows

Published online by Cambridge University Press:  21 April 2006

F. Durst
Affiliation:
Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, Egerlandstr. 13. 8520 Erlangen, FRG
B. Schönung
Affiliation:
Institut für Hydromechanik, Universität Karlsruhe, Kaiserstr. 12, 7500 Karlsruhe 1, FRG
K. Selanger
Affiliation:
Norwegian Hydrodynamic Laboratories, Klaebuveien 153, 7001 Trondheim, Norway
M. Winter
Affiliation:
Institut für Hydromechanik, Universität Karlsruhe, Kaiserstr. 12, 7500 Karlsruhe 1, FRG

Abstract

Detailed information is provided in this paper on the physics of momentum transfer in bubble-driven liquid flows. Experimental information is obtained on the flow around bubbles and on the axisymmetric bubble-driven liquid flow inside liquid-filled cylinders located with their axes in the vertical direction. A laser-Doppler anemometer extended for particulate two-phase flows is employed for these measurements to yield local fluid velocity information as well as the rise velocity of bubbles. The bubble top radius and the bubble shape were also found from these measurements.

Utilizing experimentally gained information and employing the basic equations for particulate two-phase flows, permits finite difference equations to be formulated that allow bubble-driven liquid flows to be computed. Results are presented for boundary conditions corresponding to those of the experimental studies. Comparisons of numerical and experimental results are shown to be in good agreement. This is taken as a justification to employ the developed computer programs to carry out parameter studies for bubble-driven liquid flow inside circular cylinders. Results of these studies are presented and discussed.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auton T. J.1984 The dynamics of bubbles, drops and particles in liquids. Ph.D. thesis, University of Cambridge.
Brankovic A., Börner, T. & Martin W. W.1984 The measurement of mass transfer coefficients of bubbles rising in liquids using laser-Doppler anemometry. In Laser Anemometry in Fluid Mechanics (ed. D. F. G. Durao). Lisbon: Ladoan.
Brauer H.1982 Movement of single particles in various flow fields. In Advances in Transport Processes (ed. A. S. Mujumdar & R. A. Masbelkar), p. 352. New Delhi: Wiley Eastern.
Clift R., Grace, J. R. & Weber M. E.1978 Bubbles, Drops and Particles. Academic.
Durst, F. & Zaré M.1975 Laser-Doppler measurements in two-phase flows. Proc. LDA-Symposium, Copenhagen, p. 403.Google Scholar
Durst F., Melling, A. & Whitelaw J. H.1976 Principles and Practice of Laser-Doppler Anemometry. Academic.
Durst F., Schönung, B. & Simons M.1981 Steady Ellipsoidal Vortex Rings with Finite Cores. Z. angew. Math. Phys. 32, 156.Google Scholar
Durst F., Taylor, A. M. K. P. & Whitelaw J. H.1984a Experimental and numerical investigation of confined, laminar, bubble-driven liquid flow. Intl J. Multiphase Flow 10, 557.Google Scholar
Durst F., Milojevic, D. & Schönung B.1984b Eulerian and Lagrangian predictions of particulate two-phase flows: a numerical study. Appl. Math. Modelling 8, 101.Google Scholar
Goldstein S.1929 The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers Proc. R. Soc. Lond. A 123, 225.Google Scholar
Govier, G. W. & Aziz K.1972 The Flow of Complex Mixtures in Pipes. Van Nostrand Reinhold.
Hadamard M. J.1911 C. R. hebd. Séanc. Acad. Sci. 152, 1735.
Harper J. F.1972 The motion of bubbles and drops through liquids. Adv. Appl. Mech. 12, 59.Google Scholar
Levich V. G.1962 Physiochemical Hydrodynamics. Prentice-Hall.
Martin W. W., Adbelmessih A. H., Liska, J. J. & Durst F.1981 Characteristics of Laser-Doppler signals from bubbles. Intl J. Multiphase Flow 7, 439.Google Scholar
Martin, W. W. & Chandler G. M.1982 The local measurement of size and velocity of bubbles rising in grids. Appl. Sci. Res. 38, 239.Google Scholar
Miksis M. J., Vanden-Broeck, J. M. & Keller J. B.1982 Rising bubbles. J. Fluid Mech. 123, 31.Google Scholar
Oseen C. W.1927 Neuere Methoden und Ergebnisse in der Hydromechanik. Leipzig: Akademische Verlagsges.
Pan, F. Y. & Acrivos A.1968 Shape of a drop or bubble at low Reynolds number I & EC Fundamentals, 7, 227.Google Scholar
Rybczynski W.1911 Über die fortschreitende Bewegung einer flüssigen Kugel Bull. Acad. Sci. Cracow A 40.Google Scholar
Sadhal, S. S. & Johnson R. E.1983 Stokes flow past bubbles and drops partially coated with thin films. J. Fluid Mech. 126, 237.Google Scholar
SchÖnung B.1983 Numerische Simulation teilchenbeladener vertikaler Rohrströmungen. Ph.D. thesis, Universität Karlsruhe.
Stokes G. G.1891 On the effect of the internal friction of fluids on the motion of pendulum. Math. Phys. Papers 3, 55.Google Scholar