Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T07:46:35.110Z Has data issue: false hasContentIssue false

Bifurcation and multiple states in plane Couette flow with spanwise rotation

Published online by Cambridge University Press:  03 March 2021

Xiang I. A. Yang
Affiliation:
Mechanical and Nuclear Engineering, Pennsylvania State University, State College, PA16802, USA
Zhenhua Xia*
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou310027, PR China
*
Email address for correspondence: [email protected]

Abstract

We present a derivation that begins with the Navier–Stokes equation and ends with a prediction of multiple statistically stable states identical to those observed in a spanwise rotating plane Couette flow. This derivation is able to explain the presence of multiple states in fully developed turbulence and the selection of one state over another by differently sized computational domains and different initial conditions. According to the present derivation, two and only two statistically stable states are possible in an infinitely large plane Couette flow with spanwise rotation, and that multiple states are not possible at very slow or very rapid rotation speeds. We also show the existence of limit-cycle-like behaviours near statistically stable states.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Funfschilling, D. & Bodenschatz, E. 2011 Heat transport in turbulent Rayleigh–Bénard convection for $Pr\approx 0.8$ and $Ra\lesssim 10^{15}$. J. Phys.: Conf. Ser. 318 (8), 082001.Google Scholar
Anderson, W. 2019 Non-periodic phase-space trajectories of roughness-driven secondary flows in high-Re boundary layers and channels. J. Fluid Mech. 869, 2784.CrossRefGoogle Scholar
Biferale, L. 2003 Shell models of energy cascade in turbulence. Annu. Rev. Fluid Mech. 35 (1), 441468.CrossRefGoogle Scholar
Chandra, M. & Verma, M.K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110 (11), 114503.CrossRefGoogle ScholarPubMed
Chen, X., Huang, S.-D., Xia, K.-Q. & Xi, H.-D. 2019 Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection. J. Fluid Mech. 877, R1.CrossRefGoogle Scholar
Chong, K.L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3 (1), 013501.CrossRefGoogle Scholar
Drazin, P.G. & Reid, W.H. 2004 Hydrodynamic Stability. Cambridge University Press.CrossRefGoogle Scholar
Farrell, B.F., Gayme, D.F. & Ioannou, P.J. 2017 A statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160081.Google ScholarPubMed
Farrell, B.F. & Ioannou, P.J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.CrossRefGoogle Scholar
Farrell, B.F. & Ioannou, P.J. 2019 Statistical state dynamics: a new perspective on turbulence in shear flow. In Zonal Jets: Phenomenology, Genesis, and Physics (ed B. Galperin & P. L. Read), pp. 380–400. Cambridge University Press.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galanti, B. & Tsinober, A. 2004 Is turbulence ergodic? Phys. Lett. A 330 (3–4), 173180.CrossRefGoogle Scholar
Gul, M., Elsinga, G.E. & Westerweel, J. 2018 Experimental investigation of torque hysteresis behaviour of Taylor–Couette flow. J. Fluid Mech. 836, 635648.CrossRefGoogle Scholar
Huang, Y., Xia, Z., Wan, M., Shi, Y. & Chen, S. 2019 a Hysteresis behavior in spanwise rotating plane Couette flow with varying rotation rates. Phys. Rev. Fluids 4 (5), 052401.CrossRefGoogle Scholar
Huang, Y., Xia, Z., Wan, M., Shi, Y. & Chen, S. 2019 b Numerical investigation of plane Couette flow with weak spanwise rotation. Sci. China Phys. Mech. 62, 044711.CrossRefGoogle Scholar
Huisman, S.G., Van Der Veen, R.C., Sun, C. & Lohse, D. 2014 Multiple states in highly turbulent Taylor–Couette flow. Nat. Commun. 5 (1), 15.CrossRefGoogle ScholarPubMed
Majda, A.J. & Timofeyev, I. 2000 Remarkable statistical behavior for truncated Burgers–Hopf dynamics. Proc. Natl Acad. Sci. USA 97 (23), 1241312417.CrossRefGoogle ScholarPubMed
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
van der Poel, E., Stevens, R. & Lohse, D. 2011 Connecting flow structures and heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 84, 045303.CrossRefGoogle ScholarPubMed
Rapún, M.-L. & Vega, J.M. 2010 Reduced order models based on local POD plus Galerkin projection. J. Comput. Phys. 229 (8), 30463063.CrossRefGoogle Scholar
Ravelet, F., Chiffaudel, A. & Daviaud, F. 2008 Supercritical transition to turbulence in an inertially driven von Kármán closed flow. J. Fluid Mech. 601, 339364.CrossRefGoogle Scholar
Ravelet, F., Marié, L., Chiffaudel, A. & Daviaud, F. 2004 Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. Phys. Rev. Lett. 93 (16), 164501.CrossRefGoogle Scholar
Stevens, R., Zhong, J., Clercx, H., Ahlers, G. & Lohse, D. 2009 Transitions between turbulent states in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 024503.CrossRefGoogle ScholarPubMed
Taira, K., Brunton, S.L., Dawson, S.T., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55 (12), 40134041.CrossRefGoogle Scholar
Tsinober, A. 2001 An Informal Introduction to Turbulence, vol. 63. Springer Science & Business Media.Google Scholar
van der Veen, R.C., Huisman, S.G., Dung, O.-Y., Tang, H.L., Sun, C. & Lohse, D. 2016 Exploring the phase space of multiple states in highly turbulent Taylor–Couette flow. Phys. Rev. Fluids 1 (2), 024401.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.CrossRefGoogle Scholar
Wang, Q., Verzicco, R., Lohse, D. & Shishkina, O. 2020 Multiple states in turbulent large-aspect ratio thermal convection: what determines the number of convection rolls? Phys. Rev. Lett. 125, 074501.CrossRefGoogle ScholarPubMed
Wang, Q., Wan, Z., Yan, R. & Sun, D. 2018 Multiple states and heat transfer in two-dimensional tilted convection with large aspect ratios. Phys. Rev. Fluids 3, 113503.CrossRefGoogle Scholar
Wei, P., Weiss, S. & Ahlers, G. 2015 Multiple transitions in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114, 114506.CrossRefGoogle ScholarPubMed
Weiss, S. & Ahlers, G. 2013 Effect of tilting on turbulent convection: cylindrical samples with aspect ratio $\gamma = 0.50$. J. Fluid Mech. 715, 314334.CrossRefGoogle Scholar
Weiss, S., Stevens, R., Zhong, J., Clercx, H., Lohse, D. & Ahlers, G. 2010 Finite-size effects lead to supercritical bifurcations in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 105, 224501.CrossRefGoogle ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008 Flow mode transitions in turbulent thermal convection. Phys. Fluids 20 (5), 055104.CrossRefGoogle Scholar
Xia, Z., Shi, Y., Cai, Q., Wan, M. & Chen, S. 2018 Multiple states in turbulent plane Couette flow with spanwise rotation. J. Fluid Mech. 837, 477490.CrossRefGoogle Scholar
Xia, Z., Shi, Y., Wan, M., Sun, C., Cai, Q. & Chen, S. 2019 Role of the large-scale structures in spanwise rotating plane Couette flow with multiple states. Phys. Rev. Fluids 4, 104606.CrossRefGoogle Scholar
Xie, Y.-C., Ding, G.-Y. & Xia, K. 2018 Flow topology transition via global bifurcation in thermally driven turbulence. Phys. Rev. Lett. 120, 214501.CrossRefGoogle ScholarPubMed
Xu, H.H. & Yang, X. 2018 Fractality and the law of the wall. Phys. Rev. E 97 (5), 053110.CrossRefGoogle Scholar
Yang, X.I.A., Xia, Z.H., Lee, J., Lv, Y. & Yuan, J. 2020 a Mean flow scaling in a spanwise rotating channel. Phys. Rev. Fluids 5, 074603.CrossRefGoogle Scholar
Yang, Y., Chen, W., Verzicco, R. & Lohse, D. 2020 b Multiple states and transport properties of double-diffusive convection turbulence. Proc. Natl Acad. Sci. USA 117, 202005669.Google ScholarPubMed
Yokoyama, N. & Takaoka, M. 2017 Hysteretic transitions between quasi-two-dimensional flow and three-dimensional flow in forced rotating turbulence. Phys. Rev. Fluids 2, 092602(R).CrossRefGoogle Scholar
Zimmerman, D.S., Triana, S.A. & Lathrop, D.P. 2011 Bi-stability in turbulent, rotating spherical Couette flow. Phys. Fluids 23 (6), 065104.CrossRefGoogle Scholar