Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T09:06:22.537Z Has data issue: false hasContentIssue false

Axisymmetric internal wave transmission and resonant interference in nonlinear stratifications

Published online by Cambridge University Press:  10 January 2020

S. Boury*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342Lyon, France Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,MA02139, USA
P. Odier
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342Lyon, France
T. Peacock
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,MA02139, USA
*
Email address for correspondence: [email protected]

Abstract

To date, the influence of nonlinear stratifications and two layer stratifications on internal wave propagation has been studied for two-dimensional wave fields in a Cartesian geometry. Here, we use a novel wave generator configuration to investigate transmission in nonlinear stratifications of an axisymmetric internal wave. We demonstrate that, despite the additional geometric complexity, with associated features such as an inhomogeneous spatial distribution of the energy flux, results for plane waves can be generalised to axisymmetric wave fields. Two configurations are studied, both theoretically and experimentally. In the case of a free incident wave, a transmission maximum is found in the vicinity of evanescent frequencies. In the case of a confined incident wave, resonant effects, in the sense of constructive interference, lead to enhanced transmission rates from an upper layer to a layer below. We consider the oceanographic relevance of these results by applying them to an example oceanic stratification, finding that there can be real-world implications.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansong, J. K. & Sutherland, B. R. 2010 Internal gravity waves generated by convective plumes. J. Fluid Mech. 648, 405434.CrossRefGoogle Scholar
Appleby, J. C. & Crighton, D. G. 1987 Internal gravity waves generated by oscillations of a sphere. J. Fluid Mech. 183, 439450.CrossRefGoogle Scholar
Beckebanze, F., Brouzet, C., Sibgatullin, I. N. & Maas, L. R. M. 2018 Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction. J. Fluid Mech. 841, 614635.CrossRefGoogle Scholar
Bell, T. H. 1978 Radiation damping of inertial oscillations in the upper ocean. J. Fluid Mech. 88, 289308.CrossRefGoogle Scholar
Boury, S., Peacock, T. & Odier, P. 2019 Excitation and resonant enhancement of axisymmetric internal wave modes. Phys. Rev. Fluids 4, 034802.CrossRefGoogle Scholar
Brandt, A. & Shipley, K. R. 2019 Internal gravity waves generated by an impulsive plume. Phys. Rev. Fluids 4, 014803.CrossRefGoogle Scholar
Brown, G. L. & Sutherland, B. R. 2007 Internal wave tunnelling through non-uniformly stratified shear flow. Atmos.-Ocean 45, 4756.CrossRefGoogle Scholar
Chini, G. P. & Leibovich, S. 2005 Resonant Langmuir-circulation–internal-wave interaction. Part 2. Langmuir circulation instability. J. Fluid Mech. 524, 519–120.CrossRefGoogle Scholar
Cole, S. T., Timmermans, M.-L., Toole, J. M., Krishfield, R. A. & Thwaites, F. T. 2013 Ekman veering, internal waves, and turbulence observed under arctic sea ice. J. Phys. Oceanogr. 44, 13061328.CrossRefGoogle Scholar
Duran-Matute, M., Flór, J.-B., Godeberd, F. S. & Jause-Labert, C. 2013 Turbulence and columnar vortex formation through inertial-wave focusing. Phys. Rev. E 87, 041001(R).Google ScholarPubMed
Fincham, A. & Delerce, G. 2000 Advanced optimization of correlation imaging velocimetry algorithms. Exp. Fluids 29, 1322.CrossRefGoogle Scholar
Fortuin, J. M. H. 1960 Theory and application of two supplementary methods of constructing density gradient columns. J. Polym. Sci. 44, 505515.CrossRefGoogle Scholar
Ghaemsaidi, S. J., Dosser, H. V., Rainville, L. & Peacock, T. 2016 The impact of multiple layering on internal wave transmission. J. Fluid Mech. 789, 617629.CrossRefGoogle Scholar
Ghaemsaidi, S. J. & Peacock, T. 2013 3D stereoscopic PIV visualization of the axisymmetric conical internal wave field generated by an oscillating sphere. Exp. Fluids 54, 1454.CrossRefGoogle Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2006 A novel internal waves generator. Exp. Fluids 42, 123130.CrossRefGoogle Scholar
Kistovich, Y. V. & Chashechkin, Y. D. 1998 Linear theory of the propagation of internal wave beams in an arbitrarily stratified liquid. J. Appl. Mech. Tech. Phys. 39, 729737.CrossRefGoogle Scholar
King, B., Stone, M., Zhang, H. P., Gerkema, T., Marder, M., Scott, R. B. & Swinney, H. L. 2012 Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans. J. Geophys. Res. 117, C04008.CrossRefGoogle Scholar
Kumar, K. N., Ramkumar, T. K. & Krishnaiah, M. 2011 MST radar observation of inertia-gravity waves generated from tropical cyclones. J. Atmos. Sol.-Terr. Phys. 73, 18901906.CrossRefGoogle Scholar
Le Dizès, S. 2015 Wave field and zonal flow of a librating disk. J. Fluid Mech. 782, 178208.CrossRefGoogle Scholar
Mathur, M. & Peacock, T. 2009 Internal wave beam propagation in non-uniform stratifications. J. Fluid Mech. 639, 133152.CrossRefGoogle Scholar
Mathur, M. & Peacock, T. 2010 Internal wave interferometry. Phys. Rev. Lett. 104, 118501.CrossRefGoogle ScholarPubMed
Maurer, P., Ghaemsaidi, S. J., Joubaud, S., Peacock, T. & Odier, P. 2017 An axisymmetric inertia-gravity wave generator. Exp. Fluids 58, 143.CrossRefGoogle Scholar
Morse, P. M. 1948 Vibration and Sound. MGH.Google Scholar
Mowbray, D. E. & Rarity, B. S. H. 1967 The internal wave pattern produced by a sphere moving vertically in a density stratified liquid. J. Fluid Mech. 30, 489495.CrossRefGoogle Scholar
Nault, J. T. & Sutherland, B. R. 2007 Internal wave transmission in non-uniform flows. Phys. Fluids 19, 016601.CrossRefGoogle Scholar
Oster, G. & Yamamoto, M. 1963 Density gradient techniques. Chem. Rev. 63, 257268.CrossRefGoogle Scholar
Peacock, T. & Weidman, P. 2005 The effect of rotation on conical wave beams in a stratified fluid. Exp. Fluids 39, 3237.CrossRefGoogle Scholar
Paoletti, M. S. & Swinney, H. L. 2012 Propagating and evanescent internal waves in a deep ocean model. J. Fluid Mech. 706, 571583.CrossRefGoogle Scholar
Perot, A. & Fabry, C. 1899 On the application of interference phenomena to the solution of various problems of spectroscopy and metrology. Astrophys. J. 9, 87.CrossRefGoogle Scholar
Polton, J. A., Smith, J. A., MacKinnon, J. A. & Tejada-Martínez, A. E. 2008 Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer. Geophys. Res. Lett. 35, L13602.CrossRefGoogle Scholar
Rayleigh, J. W. S. 1945 Theory of Sound (1896), 2nd edn. Dover.Google Scholar
Schubert, W. H., Hack, J. J., Silva Dias, P. L. & Fulton, S. R. 1980 Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sol.-Terr. Phys. 37, 14641484.Google Scholar
Sentman, D. D., Wescott, E. M., Picard, R. H., Winick, J. R., Stenbaeck-Nielsen, H. C., Dewan, E. M., Moudry, D. R., São Sabbas, F. T., Heavner, M. J. & Morrill, J. 2003 Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J. Atmos. Sol.-Terr. Phys. 65, 537550.CrossRefGoogle Scholar
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.CrossRefGoogle Scholar
Sutherland, B. R. & Yewchuk, K. 2004 Internal wave tunnelling. J. Fluid Mech. 511, 125134.CrossRefGoogle Scholar
Warren, F. W. G. 1960 Wave resistance to vertical motion in a stratified fluid. Fluid Mech. 7, 209229.CrossRefGoogle Scholar