Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T03:18:43.465Z Has data issue: false hasContentIssue false

Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface

Published online by Cambridge University Press:  13 December 2013

A. V. Kuznetsov*
Affiliation:
Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695-7910, USA
D. G. Blinov
Affiliation:
Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
A. A. Avramenko
Affiliation:
Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
I. V. Shevchuk
Affiliation:
MBtech Group GmbH and Co. KGaA, 70736 Fellbach-Schmiden, Germany
A. I. Tyrinov
Affiliation:
Institute of Engineering Thermophysics, National Academy of Sciences, Kiev, Ukraine
I. A. Kuznetsov
Affiliation:
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218-2694, USA
*
Email address for correspondence: [email protected]

Abstract

In this paper, we have developed an approximate method for modelling the flow of embryonic fluid in a ventral node. We simplified the problem as flow in a two-dimensional cavity; the effect of rotating cilia was modelled by specifying a constant vorticity at the edge of the ciliated layer. We also developed an approximate solution for morphogen transport in the nodal pit. The solutions were obtained utilizing the proper generalized decomposition (PGD) method. We compared our approximate solutions with the results of numerical simulation of flow caused by the rotation of 81 cilia, and obtained reasonable agreement in most of the flow domain. We discuss locations where agreement is less accurate. The obtained semi-analytical solutions simplify the analysis of flow and morphogen distribution in a nodal pit.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzelius, B. 1976 Human syndrome caused by immotile cilia. Science 193, 317319.CrossRefGoogle ScholarPubMed
Ammar, A., Mokdad, B., Chinesta, F. & Keunings, R. 2006 A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J. Non-Newtonian Fluid Mech. 139, 153176.CrossRefGoogle Scholar
Aw, S. & Levin, M. 2008 What’s left in asymmetry? Dev. Dyn. 237, 34533463.CrossRefGoogle ScholarPubMed
Bartoloni, L., Blouin, J., Pan, Y., Gehrig, C., Maiti, A., Scamuffa, N., Rossier, C., Jorissen, M., Armengot, M., Meeks, M., Mitchison, H., Chung, E., Delozier-Blanchet, C., Craigen, W. & Antonarakis, S. 2002 Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 99, 1028210286.CrossRefGoogle ScholarPubMed
Beddington, R. & Robertson, E. 1999 Axis development and early asymmetry in mammals. Cell 96, 195209.CrossRefGoogle ScholarPubMed
Blake, J. 1973 Flow in tubules due to ciliary activity. Bull. Math. Biol. 35, 513523.CrossRefGoogle ScholarPubMed
Blake, J., Liron, N. & Aldis, G. 1982 Flow patterns around ciliated microorganisms and in ciliated ducts. J. Theor. Biol. 98, 127141.CrossRefGoogle ScholarPubMed
Borovina, A., Superina, S., Voskas, D. & Ciruna, B. 2010 Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat. Cell Biol. 12, 407412.CrossRefGoogle ScholarPubMed
Buceta, J., Ibanes, M., Rasskin-Gutman, D., Okada, Y., Hirokawa, N. & Izpisua-Belmonte, J. 2005 Nodal cilia dynamics and the specification of the left/right axis in early vertebrate embryo development. Biophys. J. 89, 21992209.CrossRefGoogle ScholarPubMed
Cartwright, J. H. E., Piro, N., Piro, O. & Tuval, I. 2007 Embryonic nodal flow and the dynamics of nodal vesicular parcels. J. R. Soc. Interface 4, 4955.CrossRefGoogle ScholarPubMed
Cartwright, J. H. E., Piro, N., Piro, O. & Tuval, I. 2008 Fluid dynamics of nodal flow and left-right patterning in development. Dev. Dyn. 237, 34773490.CrossRefGoogle ScholarPubMed
Cartwright, J., Piro, O. & Tuval, I. 2004 Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc. Natl Acad. Sci. USA 101, 72347239.CrossRefGoogle ScholarPubMed
Chen, D., Norris, D. & Ventikos, Y. 2011 Ciliary behaviour and mechano-transduction in the embryonic node: computational testing of hypotheses. Med. Engng Phys. 33, 857867.CrossRefGoogle ScholarPubMed
Chinesta, F., Ammar, A. & Cueto, E. 2010 Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Meth. Engng 17, 327350.CrossRefGoogle Scholar
Dumon, A., Allery, C. & Ammar, A. 2011 Proper general decomposition (PGD) for the resolution of Navier–Stokes equations. J. Comput. Phys. 230, 13871407.CrossRefGoogle Scholar
Evans, B. A., Shields, A. R., Carroll, R. L., Washburn, S., Falvo, M. R. & Superfine, R. 2007 Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7, 14281434.CrossRefGoogle ScholarPubMed
Harvey, R. 1998 Links in the left/right axial pathway. Cell 94, 273276.CrossRefGoogle ScholarPubMed
Hashimoto, M., Shinohara, K., Wang, J., Ikeuchi, S., Yoshiba, S., Meno, C., Nonaka, S., Takada, S., Hatta, K., Wynshaw-Boris, A. & Hamada, H. 2010 Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 12, 170176.CrossRefGoogle ScholarPubMed
Hirokawa, N., Okada, Y. & Tanaka, Y. 2009a Fluid dynamic mechanism responsible for breaking the left-right symmetry of the human body: the nodal flow. Annu. Rev. Fluid Mech. 41, 5372.CrossRefGoogle Scholar
Hirokawa, N., Tanaka, Y. & Okada, Y. 2009b Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harbor Perspectives in Biology 1, a000802.CrossRefGoogle ScholarPubMed
Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. 2006 Nodal flow and the generation of left-right asymmetry. Cell 125, 3345.CrossRefGoogle ScholarPubMed
Kicheva, A., Bollenbach, T., Wartlick, O., Jülicher, F. & Gonzalez-Gaitan, M. 2012 Investigating the principles of morphogen gradient formation: from tissues to cells. Curr. Opin. Genet. Dev. 22, 527532.CrossRefGoogle ScholarPubMed
Kicheva, A., Pantazis, P., Bollenbach, T., Kalaidzidis, Y., Bittig, T., Juelicher, F. & Gonzalez-Gaitan, M. 2007 Kinetics of morphogen gradient formation. Science 315, 521525.CrossRefGoogle ScholarPubMed
Lyons, R. A., Saridogan, E. & Djahanbakhch, O. 2006 The reproductive significance of human fallopian tube cilia. Hum. Reprod. Update 12, 363372.CrossRefGoogle ScholarPubMed
Matsui, H., Randell, S., Peretti, S., Davis, C. & Boucher, R. 1998 Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102, 11251131.CrossRefGoogle ScholarPubMed
McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. 2003 Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 6173.CrossRefGoogle ScholarPubMed
Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. 2002 Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 9699.CrossRefGoogle ScholarPubMed
Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M. & Hirokawa, N. 1998 Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829837.CrossRefGoogle ScholarPubMed
Nouy, A. 2010 A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Meth. Appl. Engng 199, 16031626.CrossRefGoogle Scholar
Okada, Y., Takeda, S., Tanaka, Y., Belmonte, J. & Hirokawa, N. 2005 Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121, 633644.CrossRefGoogle Scholar
Pruliere, E., Chinesta, F. & Ammar, A. 2010 On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math. Comput. Simul. 81, 791810.CrossRefGoogle Scholar
Raya, A. & Belmonte, J. 2006 Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nature Reviews Genetics 7, 283293.CrossRefGoogle ScholarPubMed
Shields, A. R., Fiser, B. L., Evans, B. A., Falvo, M. R., Washburn, S. & Superfine, R. 2010 Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc. Natl Acad. Sci. USA 107, 1567015675.CrossRefGoogle ScholarPubMed
Shinohara, K., Kawasumi, A., Takamatsu, A., Yoshiba, S., Botilde, Y., Motoyama, N., Reith, W., Durand, B., Shiratori, H. & Hamada, H. 2012 Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo. Nat. Commun. 3, 622.CrossRefGoogle ScholarPubMed
Smith, A. A., Johnson, T. D., Smith, D. J. & Blake, J. R. 2012 Symmetry breaking cilia-driven flow in the zebrafish embryo. J. Fluid Mech. 705, 2645.CrossRefGoogle Scholar
Smith, D. J., Blake, J. R. & Gaffney, E. A. 2008 Fluid mechanics of nodal flow due to embryonic primary cilia. J. R. Soc. Interface 5, 567573.CrossRefGoogle ScholarPubMed
Smith, D. J., Gaffney, E. A. & Blake, J. R. 2009 Mathematical modelling of cilia-driven transport of biological fluids. Proc. R. Soc. Lond. A 465, 24172439.Google Scholar
Smith, D. J., Smith, A. A. & Blake, J. R. 2011 Mathematical embryology: the fluid mechanics of nodal cilia. J. Engng Maths 70, 255279.CrossRefGoogle Scholar
Supp, D., Witte, D., Potter, S. & Brueckner, M. 1997 Mutation of an axonemal dynein affects left right asymmetry in inversus viscerum mice. Nature 389, 963966.CrossRefGoogle ScholarPubMed
Tabin, C. & Vogan, K. 2003 A two-cilia model for vertebrate left-right axis specification. Genes Dev. 17, 16.CrossRefGoogle ScholarPubMed
Takamatsu, A., Shinohara, K., Ishikawa, T. & Hamada, H. 2013 Hydrodynamic phase locking in mouse node cilia. Phys. Rev. Lett. 110, 248107.CrossRefGoogle ScholarPubMed
Tanaka, Y., Okada, Y. & Hirokawa, N. 2005 FGF-induced vesicular release of sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435, 172177.CrossRefGoogle ScholarPubMed
Vilfan, A. & Julicher, F. 2006 Hydrodynamic flow patterns and synchronization of beating cilia. Phys. Rev. Lett. 96, 058102.CrossRefGoogle ScholarPubMed
Yoshiba, S., Shiratori, H., Kuo, I. Y., Kawasumi, A., Shinohara, K., Nonaka, S., Asai, Y., Sasaki, G., Belo, J. A., Sasaki, H., Nakai, J., Dworniczak, B., Ehrlich, B. E., Pennekamp, P. & Hamada, H. 2012 Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338, 226231.CrossRefGoogle ScholarPubMed