Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T19:57:41.741Z Has data issue: false hasContentIssue false

Analytical results on the role of flexibility in flapping propulsion

Published online by Cambridge University Press:  24 September 2014

M. Nicholas J. Moore*
Affiliation:
Courant Institute of Mathematical Sciences, New York University, NY 10012, USA Department of Mathematics and Geophysical Fluid Dynamics Institute, Florida State University, FL 32306, USA
*
Email addresses for correspondence: [email protected], [email protected]

Abstract

Wing or fin flexibility can dramatically affect the performance of flying and swimming animals. Both laboratory experiments and numerical simulations have been used to study these effects, but analytical results are notably lacking. Here, we develop small-amplitude theory to model a flapping wing that pitches passively due to a combination of wing compliance, inertia and fluid forces. Remarkably, we obtain a class of exact solutions describing the wing’s emergent pitching motions, along with expressions for how thrust and efficiency are modified by compliance. The solutions recover a range of realistic behaviours and shed new light on how flexibility can aid performance, the importance of resonance, and the separate roles played by wing and fluid inertia. The simple robust estimates afforded by our theory may prove valuable even in situations where details of the flapping motion and wing geometry differ.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355380.CrossRefGoogle Scholar
Alben, S., Witt, C., Baker, T. V., Anderson, E. & Lauder, G. V. 2012 Dynamics of freely swimming flexible foils. Phys. Fluids 24 (5), 051901.CrossRefGoogle Scholar
Bergou, A. J., Xu, S. & Wang, Z. 2007 Passive wing pitch reversal in insect flight. J. Fluid Mech. 591 (1), 321337.CrossRefGoogle Scholar
Brennen, C. E.1982 A review of added mass and fluid inertial forces. Tech Rep. CR 82.010. Contract no. N62583-81-MR-554. Naval Civil Engineering Laboratory.Google Scholar
Dai, H., Luo, H. & Doyle, J. F. 2012 Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473499.CrossRefGoogle Scholar
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.CrossRefGoogle Scholar
Ennos, A. R. 1988 The importance of torsion in the design of insect wings. J. Expl Biol. 140 (1), 137160.CrossRefGoogle Scholar
Fish, F. E. 1993 Power output and propulsive efficiency of swimming bottlenose dolphins (tursiops truncatus). J. Expl Biol. 185 (1), 179193.CrossRefGoogle Scholar
Heathcote, S. & Gursul, I. 2007 Flexible flapping aerofoil propulsion at low Reynolds numbers. AIAA J. 45 (5), 10661079.CrossRefGoogle Scholar
Kang, C. K., Aono, H., Cesnik, C. E. S. & Shyy, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689 (1), 3274.CrossRefGoogle Scholar
Katz, J. & Weihs, D. 1978 Hydrodynamic propulsion by large amplitude oscillation of an aerofoil with chordwise flexibility. J. Fluid Mech. 88 (03), 485497.CrossRefGoogle Scholar
Lucas, K. N., Johnson, N., Beaulieu, W. T., Cathcart, E., Tirrell, G., Colin, S. P., Gemmell, B. J., Dabiri, J. O. & Costello, J. H. 2014 Bending rules for animal propulsion. Nat. Commun. 5, 3293.CrossRefGoogle ScholarPubMed
Masoud, H. & Alexeev, A. 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. E 81 (5), 056304.CrossRefGoogle ScholarPubMed
Michelin, S. & Smith, S. G. L. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.CrossRefGoogle Scholar
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2011 Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl Acad. Sci. USA 108 (15), 59645969.CrossRefGoogle ScholarPubMed
Ristroph, L. & Childress, S. 2014 Stable hovering of a jellyfish-like flying machine. J. R. Soc. Interface 11 (92), 20130992.CrossRefGoogle ScholarPubMed
Rozhdestvensky, K. V. & Ryzhov, V. A. 2003 Aerohydrodynamics of flapping-wing propulsors. Prog. Aerosp. Sci. 39 (8), 585633.CrossRefGoogle Scholar
Shang, J. K., Combes, S. A., Finio, B. M. & Wood, R. J. 2009 Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspir. Biomim. 4 (3), 036002.CrossRefGoogle ScholarPubMed
Spagnolie, S. E., Moret, L., Shelley, M. J. & Zhang, J. 2010 Surprising behaviours in flapping locomotion with passive pitching. Phys. Fluids 22 (4), 041903.CrossRefGoogle Scholar
Thiria, B. & Godoy-Diana, R. 2010 How wing compliance drives the efficiency of self-propelled flapping flyers. Phys. Rev. E 82 (1), 015303.CrossRefGoogle ScholarPubMed
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 (2), 205224.CrossRefGoogle Scholar
Vandenberghe, N., Childress, S. & Zhang, J. 2006 On unidirectional flight of a free flapping wing. Phys. Fluids 18 (1), 014102.CrossRefGoogle Scholar
Vogel, S. 1994 Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.Google Scholar
Wu, T. Y. 1961 Swimming of a waving plate. J. Fluid Mech. 10 (03), 321344.CrossRefGoogle Scholar
Wu, T. Y. 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 2558.CrossRefGoogle Scholar
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K. & Thomas, A. L. R. 2009 Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325 (5947), 15491552.CrossRefGoogle ScholarPubMed