Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T16:30:14.590Z Has data issue: false hasContentIssue false

Analytical bounds on the heat transport in internally heated convection

Published online by Cambridge University Press:  17 March 2022

Anuj Kumar*
Affiliation:
Department of Applied Mathematics, University of California, Santa Cruz, CA 95064, USA
Ali Arslan*
Affiliation:
Department of Aeronautics, Imperial College London SW7 2AZ, UK
Giovanni Fantuzzi
Affiliation:
Department of Aeronautics, Imperial College London SW7 2AZ, UK
John Craske
Affiliation:
Department of Civil and Environmental Engineering, Imperial College London SW7 2AZ, UK
Andrew Wynn
Affiliation:
Department of Aeronautics, Imperial College London SW7 2AZ, UK
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We obtain an analytical bound on the non-dimensional mean vertical convective heat flux $\langle w T \rangle$ between two parallel boundaries driven by uniform internal heating. We consider two configurations. In the first, both boundaries are held at the same constant temperature and $\langle wT \rangle$ measures the asymmetry of the heat fluxes escaping the layer through the top and bottom boundaries. In the second configuration, the top boundary is held at constant temperature, the bottom one is perfectly insulating, and $\langle wT \rangle$ is related to the difference between the horizontally-averaged temperatures of the two boundaries. For the first configuration, Arslan et al. (J. Fluid Mech., vol. 919, 2021, p. A15) recently provided numerical evidence that Rayleigh-number-dependent corrections to the only known rigorous bound $\langle w T \rangle \leq 1/2$ may be provable if the classical background method is augmented with a minimum principle stating that the fluid's temperature is no smaller than that of the top boundary. Here, we confirm this fact rigorously for both configurations by proving bounds on $\langle wT \rangle$ that approach $1/2$ exponentially from below as the Rayleigh number is increased. The key to obtaining these bounds is inner boundary layers in the background fields with a particular inverse-power scaling, which can be controlled in the spectral constraint using Hardy and Rellich inequalities. These allow for qualitative improvements in the analysis that are not available to standard constructions.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arslan, A., Fantuzzi, G., Craske, J. & Wynn, A. 2021 a Bounds for internally heated convection with fixed boundary heat flux. J. Fluid Mech. 922, R1.CrossRefGoogle Scholar
Arslan, A., Fantuzzi, G., Craske, J. & Wynn, A. 2021 b Bounds on heat transport for convection driven by internal heating. J. Fluid Mech. 919, A15.CrossRefGoogle Scholar
Bouillaut, V., Lepot, S., Aumaître, S. & Gallet, B. 2019 Transition to the ultimate regime in a radiatively driven convection experiment. J. Fluid Mech. 861, R5.10.1017/jfm.2018.972CrossRefGoogle Scholar
Caulfield, C.P. & Kerswell, R.R. 2001 Maximal mixing rate in turbulent stably stratified Couette flow. Phys. Fluids 13 (4), 894900.10.1063/1.1351856CrossRefGoogle Scholar
Chernyshenko, S.I. 2017 Relationship between the methods of bounding time averages. arXiv:1704.02475 [physics.phy-dyn].Google Scholar
Chernyshenko, S.I., Goulart, P., Huang, D. & Papachristodoulou, A. 2014 Polynomial sum of squares in fluid dynamics: a review with a look ahead. Phil. Trans. R. Soc. Lond. A 372 (2020), 20130350.Google ScholarPubMed
Constantin, P. & Doering, C.R. 1995 Variational bounds on energy dissipation in incompressible flows. II. Channel flow. Phys. Rev. E 51 (4), 31923198.CrossRefGoogle ScholarPubMed
Davies, G.F. & Richards, M.A. 1992 Mantle convection. J. Geol. 100 (2), 151206.10.1086/629582CrossRefGoogle Scholar
Doering, C.R. & Constantin, P. 1992 Energy dissipation in shear driven turbulence. Phys. Rev. Lett. 69 (11), 16481651.CrossRefGoogle ScholarPubMed
Doering, C.R. & Constantin, P. 1994 Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E 49 (5), 40874099.CrossRefGoogle ScholarPubMed
Doering, C.R. & Constantin, P. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53 (6), 59575981.10.1103/PhysRevE.53.5957CrossRefGoogle ScholarPubMed
Doering, C.R., Otto, F. & Reznikoff, M.G. 2006 Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh–Bénard convection. J. Fluid Mech. 560, 229241.10.1017/S0022112006000097CrossRefGoogle Scholar
Doering, C.R. & Tobasco, I. 2019 On the optimal design of wall-to-wall heat transport. Commun. Pure Appl. Maths 72 (11), 23852448.CrossRefGoogle Scholar
Fan, W.L., Jolly, M. & Pakzad, A. 2021 Three-dimensional shear driven turbulence with noise at the boundary. Nonlinearity 34 (7), 4764.10.1088/1361-6544/abf84bCrossRefGoogle Scholar
Fantuzzi, G. 2018 Bounds for Rayleigh–Bénard convection between free-slip boundaries with an imposed heat flux. J. Fluid Mech. 837, R5.10.1017/jfm.2017.907CrossRefGoogle Scholar
Fantuzzi, G., Goluskin, D., Huang, D. & Chernyshenko, S.I. 2016 Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization. SIAM J. Appl. Dyn. Syst. 15 (4), 19621988.10.1137/15M1053347CrossRefGoogle Scholar
Fantuzzi, G., Pershin, A. & Wynn, A. 2018 Bounds on heat transfer for Bénard–Marangoni convection at infinite Prandtl number. J. Fluid Mech. 837, 562596.CrossRefGoogle Scholar
Goluskin, D. 2015 Internally heated convection beneath a poor conductor. J. Fluid Mech. 771, 3656.10.1017/jfm.2015.140CrossRefGoogle Scholar
Goluskin, D. 2016 Internally Heated Convection and Rayleigh–Bénard Convection. Springer.10.1007/978-3-319-23941-5CrossRefGoogle Scholar
Goluskin, D. & Doering, C.R. 2016 Bounds for convection between rough boundaries. J. Fluid Mech. 804, 370386.10.1017/jfm.2016.528CrossRefGoogle Scholar
Goluskin, D. & van der Poel, E.P. 2016 Penetrative internally heated convection in two and three dimensions. J. Fluid Mech. 791, R6.10.1017/jfm.2016.69CrossRefGoogle Scholar
Goluskin, D. & Spiegel, E.A. 2012 Convection driven by internal heating. Phys. Lett. A 377 (1–2), 8392.10.1016/j.physleta.2012.10.037CrossRefGoogle Scholar
Guervilly, C., Cardin, P. & Schaeffer, N. 2019 Turbulent convective length scale in planetary cores. Nature 570 (7761), 368371.10.1038/s41586-019-1301-5CrossRefGoogle ScholarPubMed
Hassanzadeh, P., Chini, G.P. & Doering, C.R. 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.10.1017/jfm.2014.306CrossRefGoogle Scholar
Kooloth, P., Sondak, D. & Smith, L.M. 2021 Coherent solutions and transition to turbulence in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Fluids 6 (1), 013501.10.1103/PhysRevFluids.6.013501CrossRefGoogle Scholar
Kumar, A. 2020 Pressure-driven flows in helical pipes: bounds on flow rate and friction factor. J. Fluid Mech. 904, A5.10.1017/jfm.2020.655CrossRefGoogle Scholar
Kumar, A. 2022 Optimal bounds in Taylor–Couette flow. Preprint. arXiv:2201.06214.Google Scholar
Kumar, A. & Garaud, P. 2020 Bound on the drag coefficient for a flat plate in a uniform flow. J. Fluid Mech. 900, A6.10.1017/jfm.2020.477CrossRefGoogle Scholar
Lepot, S., Aumaître, S. & Gallet, B. 2018 Radiative heating achieves the ultimate regime of thermal convection. Proc. Natl Acad. Sci. 115 (36), 89378941.CrossRefGoogle ScholarPubMed
Limare, A., Jaupart, C., Kaminski, E., Fourel, L. & Farnetani, C.G. 2019 Convection in an internally heated stratified heterogeneous reservoir. J. Fluid Mech. 870, 67105.CrossRefGoogle Scholar
Limare, A., Kenda, B., Kaminski, E., Surducan, E., Surducan, V. & Neamtu, C. 2021 Transient convection experiments in internally-heated systems. MethodsX 8, 101224.CrossRefGoogle ScholarPubMed
Malkus, M.V.R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225 (1161), 196212.Google Scholar
Miquel, B., Lepot, S., Bouillaut, V. & Gallet, B. 2019 Convection driven by internal heat sources and sinks: heat transport beyond the mixing-length or ‘ultimate’ scaling regime. Phys. Rev. Fluids 4 (12), 121501.10.1103/PhysRevFluids.4.121501CrossRefGoogle Scholar
Motoki, S., Kawahara, G. & Shimizu, M. 2018 Optimal heat transfer enhancement in plane Couette flow. J. Fluid Mech. 835, 11571198.10.1017/jfm.2017.779CrossRefGoogle Scholar
Motoki, S., Kawahara, G. & Shimizu, M. 2021 Multi-scale steady solution for Rayleigh–Bénard convection. J. Fluid Mech. 914, A14.CrossRefGoogle Scholar
Mulyukova, E. & Bercovici, D. 2020 Mantle convection in terrestrial planets. In Oxford Research Encyclopedia of Planetary Science.10.1093/acrefore/9780190647926.013.109CrossRefGoogle Scholar
Pierrehumbert, R.T. 2010 Principles of Planetary Climate. Cambridge University Press.10.1017/CBO9780511780783CrossRefGoogle Scholar
Priestley, C.H.B. 1954 Vertical heat transfer from impressed temperature fluctuations. Austral. J. Phys. 7 (1), 202209.CrossRefGoogle Scholar
Rajagopal, K.R., Ruzicka, M. & Srinivasa, A.R. 1996 On the Oberbeck–Boussinesq approximation. Math. Models Meth. Appl. Sci. 6 (08), 11571167.10.1142/S0218202596000481CrossRefGoogle Scholar
Roberts, P.H. 1967 Convection in horizontal layers with internal heat generation. Theory. J. Fluid Mech. 30 (1), 3349.10.1017/S0022112067001284CrossRefGoogle Scholar
Schubert, G., Turcotte, D.L. & Olson, P. 2001 Mantle Convection in the Earth and Planets. Cambridge University Press.10.1017/CBO9780511612879CrossRefGoogle Scholar
Seager, S. 2010 Exoplanet Atmospheres: Physical Processes. Princeton Series in Astrophysics. Princeton University Press.10.1515/9781400835300CrossRefGoogle Scholar
Sondak, D., Smith, L.M. & Waleffe, F. 2015 Optimal heat transport solutions for Rayleigh–Bénard convection. J. Fluid Mech. 784, 565595.CrossRefGoogle Scholar
Souza, A.N., Tobasco, I. & Doering, C.R. 2020 Wall-to-wall optimal transport in two dimensions. J. Fluid Mech. 889, A34.CrossRefGoogle Scholar
Spiegel, E.A. 1963 A generalization of the mixing-length theory of turbulent convection. Astrophys. J. 138, 216.10.1086/147628CrossRefGoogle Scholar
Spiegel, E.A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442.10.1086/146849CrossRefGoogle Scholar
Tang, W., Caulfield, C.P. & Young, W.R. 2004 Bounds on dissipation in stress-driven flow. J. Fluid Mech. 510, 333352.10.1017/S0022112004009589CrossRefGoogle Scholar
Tobasco, I. 2021 Optimal cooling of an internally heated disc. Preprint, arXiv:2110.13291.Google Scholar
Tobasco, I. & Doering, C.R. 2017 Optimal wall-to-wall transport by incompressible flows. Phys. Rev. Lett. 118 (26), 264502.10.1103/PhysRevLett.118.264502CrossRefGoogle ScholarPubMed
Tobasco, I., Goluskin, D. & Doering, C.R. 2018 Optimal bounds and extremal trajectories for time averages in nonlinear dynamical systems. Phys. Lett. A 382 (6), 382386.10.1016/j.physleta.2017.12.023CrossRefGoogle Scholar
Tran, C.T. & Dinh, T.N. 2009 The effective convectivity model for simulation of melt pool heat transfer in a light water reactor pressure vessel lower head. Part I: physical processes, modeling and model implementation. Prog. Nucl. Energy 51 (8), 849859.10.1016/j.pnucene.2009.06.007CrossRefGoogle Scholar
Tritton, D.J. 1975 Internally heated convection in the atmosphere of Venus and in the laboratory. Nature 257 (5522), 110112.CrossRefGoogle Scholar
Waleffe, F., Boonkasame, A. & Smith, L.M. 2015 Heat transport by coherent Rayleigh–Bénard convection. Phys. Fluids 27 (5), 051702.CrossRefGoogle Scholar
Wen, B., Goluskin, D. & Doering, C.R. 2022 Steady Rayleigh–Bénard convection between no-slip boundaries. J. Fluid Mech. 933, R4.CrossRefGoogle Scholar
Wen, B., Goluskin, D., LeDuc, M., Chini, G. & Doering, C.R. 2020 Steady Rayleigh–Bénard convection between stress-free boundaries. J. Fluid Mech. 905, R4.CrossRefGoogle Scholar
Whitehead, J.P. & Doering, C.R. 2011 a Internal heating driven convection at infinite Prandtl number. J. Math. Phys. 52 (9), 093101.CrossRefGoogle Scholar
Whitehead, J.P. & Doering, C.R. 2011 b Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 (24), 244501.10.1103/PhysRevLett.106.244501CrossRefGoogle ScholarPubMed