Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-01T00:34:17.803Z Has data issue: false hasContentIssue false

An extended Landau–Levich model for the dragging of a thin liquid film with a propagating surface acoustic wave

Published online by Cambridge University Press:  25 November 2016

Matvey Morozov
Affiliation:
Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
Ofer Manor*
Affiliation:
Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
*
Email address for correspondence: [email protected]

Abstract

In this paper we revisit the Landau and Levich analysis of a coating flow in the case where the flow in the thin liquid film is supported by a Rayleigh surface acoustic wave (SAW), propagating in the solid substrate. Our theoretical analysis reveals that the geometry of the film evolves under the action of the propagating SAW in a manner that is similar to the evolution of films that are being deposited using the dip coating technique. We show that in a steady state the thin-film evolution equation reduces to a generalized Landau–Levich equation with the dragging velocity, imposed by the SAW, depending on the local film thickness. We demonstrate that the generalized Landau–Levich equation has a branch of stable steady state solutions and a branch of unstable solutions. The branches meet at a saddle-node bifurcation point corresponding to the threshold value of the SAW intensity. Below the threshold value no steady states were found and our numerical computations suggest a gradual thinning of the liquid film from its initial geometry.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasiev, K., Münch, A. & Wagner, B. 2007 Landau–Levich problem for non-newtonian liquids. Phys. Rev. E 76, 036307.CrossRefGoogle ScholarPubMed
Ajaev, V. S. & Homsy, G. M. 2006 Modeling shapes and dynamics of confined bubbles. Annu. Rev. Fluid Mech. 38, 277303.CrossRefGoogle Scholar
Altshuler, G. & Manor, O. 2015 Spreading dynamics of a partially wetting water film atop a MHz substrate vibration. Phys. Fluids 27, 102103.CrossRefGoogle Scholar
Altshuler, G. & Manor, O. 2016 Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave. Phys. Fluids 28, 072102.Google Scholar
Aussillous, P. & Quéré, D. 2000 Quick deposition of a fluid on the wall of a tube. Phys. Fluids 12, 23672371.Google Scholar
Benilov, E. S., Chapman, S. J., McLeod, J. B., Ockendon, J. R. & Zubkov, V. S. 2010 On liquid films on an inclined plate. J. Fluid Mech. 663, 5369.CrossRefGoogle Scholar
Benny, D. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.CrossRefGoogle Scholar
Beyer, R. T. 1974 Nonlinear Acoustics. Navy Sea Systems Command.CrossRefGoogle Scholar
Boyd, J. P. 2000 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.Google Scholar
Campana, D. M., Ubal, S., Giavedoni, M. D. & Saita, F. A. 2010 Numerical prediction of the film thickening due to surfactants in the Landau–Levich problem. Phys. Fluids 22, 032103.Google Scholar
Chan, D. Y. C., Klaseboer, E. & Manica, R. 2011 Film drainage and coalescence between deformable drops and bubbles. Soft Matt. 7, 22352264.Google Scholar
Dixit, H. N. & Homsy, G. M. 2013 The elastic Landau–Levich problem. J. Fluid Mech. 732, 528.Google Scholar
Eckart, C. 1948 Vortices and streams caused by sound waves. Phys. Rev. 73, 6876.CrossRefGoogle Scholar
Friend, J. & Yeo, L. Y. 2011 Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647704.CrossRefGoogle Scholar
Huerre, A., Miralles, V. & Joullien, M. C. 2014 Bubbles and foams in microfluidics. Soft Matt. 10, 68886902.Google Scholar
Klaseboer, E., Gupta, R. & Manica, R. 2014 An extended Bretherton model for long Taylor bubbles at moderate capillary numbers. Phys. Fluids 26, 032107.CrossRefGoogle Scholar
Krantz, W. & Goren, S. 1970 Finite-amplitude, long waves on liquid films flowing down a plane. Ind. Engng Chem. Fundam. 9, 107113.Google Scholar
Krechetnikov, R. & Homsy, G. M. 2006 Surfactant effects in the Landau–Levich problem. J. Fluid Mech. 559, 429450.Google Scholar
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochem. URSS 17, 141153.Google Scholar
Lee, C. P. & Wang, T. G. 1993 Acoustic radiation pressure. J. Acoust. Soc. Am. 94, 10991109.Google Scholar
Manor, O., Rezk, A. R., Friend, J. R. & Yeo, L. Y. 2015 Dynamics of liquid films exposed to high-frequency surface vibration. Phys. Rev. E 91, 053015.Google Scholar
Nyborg, W. L. 1953 Acoustic streaming due to attenuated plane waves. J. Acoust. Soc. Am. 25, 6875.Google Scholar
Park, C. W. 1991 Effects of insoluble surfactants on dip coating. J. Colloid Interface Sci. 146, 382394.CrossRefGoogle Scholar
Park, C.-W. & Homsy, G. M. 1984 Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 139, 291308.Google Scholar
Parker, D. F. 1988 Stratification effects on nonlinear elastic surface waves. Phys. Earth Planet. Inter. 50, 1625.CrossRefGoogle Scholar
Quéré, D. 1999 Fluid coating on a fiber. Annu. Rev. Fluid Mech. 31, 347384.CrossRefGoogle Scholar
Rayleigh Lord 1884 On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Phil. Trans. R. Soc. Lond. 175, 121.Google Scholar
Rezk, A. R., Manor, O., Friend, J. R. & Yeo, L. Y. 2012 Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films. Nat. Commun. 3, 1167.Google Scholar
Rezk, A. R., Manor, O., Yeo, L. Y. & Friend, J. R. 2014 Double flow reversal in thin liquid films driven by megahertz-order surface vibration. Proc. R. Soc. Lond. A 470, 20130765.Google Scholar
Ruschak, K. J. 1985 Coating flows. Annu. Rev. Fluid Mech. 17, 6589.Google Scholar
Schwartz, L. W., Princen, H. M. & Kiss, A. D. 1986 On the motion of bubbles in capillary tubes. J. Fluid Mech. 172, 259275.Google Scholar
Shklyaev, S., Alabuzhev, A. A. & Khenner, M. 2009 Influence of a longitudinal and tilted vibration on stability and dewetting of a liquid film. Phys. Rev. E 79, 051603.Google Scholar
Snoeijer, J. H., Ziegler, J., Andreotti, B., Fermigier, M. & Eggers, J. 2008 Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100, 244502.Google Scholar
Spencer, A. J. M. 1970 The static theory of finite elasticity. IMA J. Appl. Maths 6 (2), 164200.CrossRefGoogle Scholar
Spiers, R. P., Subbaraman, C. V. & Wilkinson, W. L. 1975 Free coating of non-Newtonian liquids onto a vertical surface. Chem. Engng Sci. 30, 379395.Google Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.Google Scholar
Wilmanski, B. & Albers, K. 2014 Continuum Thermodynamics: Part II Applications and Examples, Series on Advances in Mathematics for Applied Sciences, vol. 85. World Scientific.Google Scholar
Wilson, S. D. R. 1982 The drag-out problem in film coating theory. J. Engng Maths 16, 209221.Google Scholar
Wong, H., Fatt, I. & Radke, C. J. 1996 Deposition and thinning of the human tear film. J. Colloid Interface Sci. 184, 4451.Google Scholar
Wong, H., Radke, C. J. & Morris, S. 1995a The motion of long bubbles in polygonal capillaries. Part 1. Thin films. J. Fluid Mech. 292, 7194.CrossRefGoogle Scholar
Wong, H., Radke, C. J. & Morris, S. 1995b The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow. J. Fluid Mech. 292, 95110.Google Scholar