Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T23:47:03.584Z Has data issue: false hasContentIssue false

An experimental study of the onset of parametrically pumped surface waves in viscous fluids

Published online by Cambridge University Press:  26 April 2006

John Bechhoefer
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
Valerie Ego
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
Sebastien Manneville
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
Brad Johnson
Affiliation:
Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

Abstract

We measure the threshold accelerations necessary to excite surface waves in a vertically vibrated fluid container (the Faraday instability). Under the proper conditions, the thresholds and onset wavelengths agree with recent theoretical predictions for a laterally infinite, finite-depth container filled with a viscous fluid. Experimentally, we show that by using a viscous, non-polar fluid, the finite-size effects of sidewalls and the effects of surface contamination can be made negligible. We also show that finite-size corrections are of order h/L, where h is the fluid depth and L the container size. Based on these measurements, one can more easily interpret certain unexpected observations from previous experimental studies of the Faraday instability.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, A. W. 1990 Physical Chemistry of Surfaces, 5th Edn. Wiley Interscience.
Ahlers, G. 1990 Experiments on bifurcations and one-dimensional patterns in non-equilibrium systems far from equilibrium. In Lectures in the Sciences of Complexity (ed. D. Stein), pp. 175224. Addison–Wesley.
Benjamin, T. B. & Scott, J. C. 1979 Gravity–capillary waves with edge constraints. J. Fluid Mech. 92, 241267.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Bosch, E. & Water, W. van De 1993 Spatiotemporal intermittency in the Faraday experiment. Phys. Rev. Lett. 70, 34203423.Google Scholar
Christiansen, B., Alstrom, P. & Levinsen, M. 1992 Ordered capillary-wave states: quasicrystals, hexagons, and radial waves. Phys. Rev. Lett. 68, 21572160.Google Scholar
Christiansen, B., Alstrom, P. & Levinsen, M. 1995 Dissipation and ordering in capillary waves at high aspect ratios. J. Fluid Mech., in press.Google Scholar
Ciliberto, S. & Gollub, J. P. 1984 Pattern competition leads to chaos. Phys. Rev. Lett. 52, 922925.Google Scholar
Ciliberto, S. & Gollub, J. P. 1985 Chaotic mode competition in parametrically forced surface waves. J. Fluid Mech. 158, 381398.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.Google Scholar
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.Google Scholar
Douady, S. & Fauve, S. 1988 Pattern selection in Faraday instability. Europhys. Lett. 6, 221226.Google Scholar
Edwards, W. S. & Fauve, S. 1992 Structure quasicrystalline engendrée par instabilité paramétrique. C. R. Acad. Sci. Paris, II 315, 417420.Google Scholar
Edwards, W. S. & Fauve, S. 1993 Parametrically excited quasicrystalline surface waves. Phys. Rev. E 47, 788791.Google Scholar
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.Google Scholar
Ezerskii, A. B., Korotin, P. I. & Rabinovich, M. I. 1985 Random self-modulation of two-dimensional structures on a liquid surface during parametric excitation. Zh. Eksp. Teor. Fiz. 41, 129131 (transl. 1986 Sov. Phys. JETP 41, 157–160).Google Scholar
Faraday, M. 1831 On the forms and states assumed by fluids in contact with vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 52, 319340.Google Scholar
Fauve, S., Kumar, K., Laroche, C., Beysens, D. & Garrabos, Y. 1992 Parametric instability of a liquid-vapor interface close to the critical point. Phys. Rev. Lett. 68, 31603163.Google Scholar
Gluckman, B. J., Marcq, P., Bridger, J. & Gollub, J. P. 1993 Time averaging of chaotic spatiotemporal wave patterns. Phys. Rev. Lett. 71, 20342037.Google Scholar
Goldstein, H. 1980 Classical Mechanics, 2nd Edn. Addison-Wesley.
Gollub, J. P. 1991 Nonlinear waves: dynamics and transport. Physica D 51, 501511.Google Scholar
Gollub, J. P. & Meyer, C. W. 1983 Symmetry breaking instabilities on a fluid surface. Physica D 6, 337346.Google Scholar
Hatschek, E. 1928 The Viscosity of Liquids. D. van Nostrand.
Henderson, D. M. & Miles, J. W. 1990 Single-mode Faraday waves in small cylinders. J. Fluid Mech. 213, 95109.Google Scholar
Hocking, L. M. 1987 The damping of capillary–gravity waves at a rigid boundary. J. Fluid Mech. 179, 253266.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. Reprinted Dover Publications, 1945.
Landau, L. D. & Lifshitz, E. M. 1976 Mechanics, 3rd edn. Pergamon.
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon.
Miles, J. W. 1967 Surface-wave damping in closed basins. Proc. R. Soc. Lond. A 297, 459475.Google Scholar
Miles, J. W. 1992 On Rayleigh's investigation of crispations of fluid resting on a vibrating support. J. Fluid Mech. 244, 645648.Google Scholar
Miles, J. W. 1993 On Faraday waves. J. Fluid Mech. 248, 671683.Google Scholar
Miles, J. W. & Henderson, D. 1990 Parametrically forced surface waves. Ann. Rev. Fluid Mech. 22, 143165.Google Scholar
Milner, S. T. 1991 Square patterns and secondary instabilities in driven capillary waves. J. Fluid Mech. 225, 81100.Google Scholar
Müller, H. W. 1993 Periodic triangular patterns in the Faraday experiment. Phys. Rev. Lett. 71, 32873290.Google Scholar
Nagel, S. R. 1991 Experimental analysis of disordered systems. In 1990 Lectures in Complex Systems (ed. L. Nadel & D. L. Stein), pp. 125-161. Addison-Wesley.
Nevolin, V. G. 1984 Parametric excitation of surface waves. Inzhenerno-Fiz. Zhu. 47, 10281042 (transl. J. Engng Phys. (1985) 49, 1482–1494).Google Scholar
Rayleigh, Lord 1883a On maintained vibrations. Phi. Mag. 15, 229235. Reprinted in Scientific Papers by Lord Rayleigh, Vol. II, pp. 188–193. Dover, 1964Google Scholar
Rayleigh, Lord 1883b On the crispations of fluid resting upon a vibrating support. Phi. Mag. 16, 5058. Reprinted in Scientific Papers by Lord Rayleigh, Vol. II, pp. 212–219. Dover, 1964.Google Scholar
Segel, L. A. 1977 Mathematics Applied to Continuum Mechanics. Macmillan. Reprinted Dover 1987.
Silveston, P. L. 1958 Wärmedurchgang in waagerechten Flüssigkeitsschichten. Forsch. Ing. Wes. 24, 2932, 5969.Google Scholar
Simonelli, F. & Gollub, J. P. 1989 Surface wave mode interactions: effects of symmetry and degeneracy. J. Fluid Mech. 199, 471494.Google Scholar
Tanford, C. 1989 Ben Franklin Stilled the Waves. Duke.
Taylor, G. I. 1923 Stability of a viscous fluid contained between two rotating cylinders. Phil. Trans. Roy. Soc. Lond. A 223, 289343.Google Scholar
Tufillaro, N. B., Ramshankar, R. & Gollub, J. P. 1989 Order–disorder transition in capillary ripples. Phys. Rev. Lett. 62, 422425.Google Scholar
Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 7997.Google Scholar