Article contents
An experimental investigation of resonant interaction of a rectangular jet with a flat plate
Published online by Cambridge University Press: 21 August 2015
Abstract
The interaction between an 8:1 aspect ratio rectangular jet and a flat plate, placed parallel to the jet, is addressed in this study. At high subsonic conditions and for certain relative locations of the plate, a resonance takes place with accompanying audible tones. Even when the tone is not audible the sound pressure level spectra are often marked by conspicuous peaks. The frequencies of these peaks, as functions of the plate’s length, its location relative to the jet as well as jet Mach number, are studied in an effort to understand the flow mechanism. It is demonstrated that the tones are not due to a simple feedback between the nozzle exit and the plate’s trailing edge; the leading edge also comes into play in determining the frequency. With parametric variation, it is found that there is an order in the most energetic spectral peaks; their frequencies cluster in distinct bands. The lowest frequency band is explained by an acoustic feedback involving diffraction at the plate’s leading edge. Under the resonant condition, a periodic flapping motion of the jet column is seen when viewed in a direction parallel to the plate. Phase-averaged Mach number data on a cross-stream plane near the plate’s trailing edge illustrate that the jet cross-section goes through large contortions within the period of the tone. Farther downstream a clear ‘axis switching’ takes place for the time-averaged cross-section of the jet that does not occur otherwise for a non-resonant condition.
JFM classification
- Type
- Papers
- Information
- Copyright
- © 2015 Cambridge University Press
References
- 27
- Cited by