Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T05:07:00.879Z Has data issue: false hasContentIssue false

Absolute linear instability in laminar and turbulent gas–liquid two-layer channel flow

Published online by Cambridge University Press:  02 January 2013

Lennon Ó Náraigh
Affiliation:
School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
Peter D. M. Spelt*
Affiliation:
Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA), CNRS, Ecole Centrale Lyon, 69134 Ecully, France Département Mécanique, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
Stephen J. Shaw
Affiliation:
Department of Mathematical Sciences, Xi’an Jiaotong–Liverpool University, 111 Ren Ai Road, Dushu Lake Higher Education Town, Suzhou, Jiangsu 215123, China
*
Email address for correspondence: [email protected]

Abstract

We study two-phase stratified flow where the bottom layer is a thin laminar liquid and the upper layer is a fully developed gas flow. The gas flow can be laminar or turbulent. To determine the boundary between convective and absolute instability, we use Orr–Sommerfeld stability theory, and a combination of linear modal analysis and ray analysis. For turbulent gas flow, and for the density ratio $r= 1000$, we find large regions of parameter space that produce absolute instability. These parameter regimes involve viscosity ratios of direct relevance to oil and gas flows. If, instead, the gas layer is laminar, absolute instability persists for the density ratio $r= 1000$, although the convective/absolute stability boundary occurs at a viscosity ratio that is an order of magnitude smaller than in the turbulent case. Two further unstable temporal modes exist in both the laminar and the turbulent cases, one of which can exclude absolute instability. We compare our results with an experimentally determined flow-regime map, and discuss the potential application of the present method to nonlinear analyses.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ar, S. & Cai, J.-Y. 1994 Reliable benchmarks using numerical instability. In Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM.Google Scholar
Arfken, G. B. & Weber, H. J. 2001 Mathematical Methods for Physicists, 5th edn. Harcourt.Google Scholar
Aships, D. E. & Reshotko, E. 1990 The vibrating ribbon problem revisited. J. Fluid Mech. 213, 531.Google Scholar
Biberg, D. 2007 A mathematical model for two-phase stratified turbulent duct flow. Multiphase Sci. Technol. 19, 1.Google Scholar
Boomkamp, P. A. M., Boersma, B. J., Miesen, R. H. M. & Beijnon, G. V. 1997 A Chebyshev collocation method for solving two-phase flow stability problems. J. Comput. Phys. 132, 191.Google Scholar
Boomkamp, P. A. M. & Miesen, R. H. M. 1996 Classification of instabilities in parallel two-phase flow. Intl J. Multiphase Flow 22, 67.Google Scholar
Bradshaw, P. 1974 Possible origin of Prandtl’s mixing-length theory. Nature 249, 135.CrossRefGoogle Scholar
Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.CrossRefGoogle Scholar
Cohen, L. S. & Hanratty, T. J. 1965 Generation of waves in the concurrent flow of air and a liquid. AIChE J. 11, 138.CrossRefGoogle Scholar
Craik, A. D. D. 1966 Wind-generated waves in thin liquid films. J. Fluid Mech. 26, 369.Google Scholar
Delbende, I. & Chomaz, J.-M. 1998 Nonlinear convective/absolute instabilities in parallel two-dimensional wakes. Phys. Fluids 10, 27242736.Google Scholar
Delbende, I., Chomaz, J.-M. & Huerre, P. 1998 Absolute/convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response. J. Fluid Mech. 355, 229254.Google Scholar
Gaster, M. 1962 A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic instability. J. Fluid Mech. 14, 222.Google Scholar
Gondret, P., Ern, P., Meignin, L. & Rabaud, M. 1999 Experimental evidence of a nonlinear transition from convective to absolute instability. Phys. Rev. Lett. 82, 14421446.Google Scholar
Hall-Taylor, N. S. & Hewitt, G. F. 1970 Annular Two-Phase Flows. Pergamon.Google Scholar
Healey, J. J. 2007 Enhancing the absolute instability of a boundary layer by adding a far-away plate. J. Fluid Mech. 579, 29.CrossRefGoogle Scholar
Healey, J. J. 2009 Destabilizing effects of confinement on homogeneous mixing layers. J. Fluid Mech. 623, 241.Google Scholar
Hoogendoorn, C. J. 1959 Gas–liquid flow in horizontal pipes. Chem. Engng Sci. 9, 205217.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instability in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.Google Scholar
Lecoeur, N., Hale, C. P., Spelt, P. D. M. & Hewitt, G. F. 2010 Visualization of droplet entrainment in turbulent stratified pipe flow. In 7th International Conference on Multiphase Flow ICMF 2010, Tampa 30 May–4 June.Google Scholar
Lingwood, R. J. 1997 On the application of the Briggs’ and steepest-descent methods to a boundary-layer flow. Stud. Appl. Maths 98, 213.Google Scholar
Mandane, J. M., Gregory, G. A. & Aziz, K. 1974 A flow pattern map for gas–liquid flow in horizontal pipes. Intl J. Multiphase Flow 1, 537553.Google Scholar
Miesen, R. & Boersma, B. J. 1995 Hydrodynamic stability of a sheared liquid film. J. Fluid Mech. 301, 175.Google Scholar
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185.Google Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics: Mechanics of Turbulence. MIT Press.Google Scholar
Özgen, S., Degrez, G. & Sarma, G. S. R. 1998 Two-fluid boundary layer stability. Phys. Fluids 10, 2746.Google Scholar
Ó Náraigh, L. & Spelt, P. D. M. 2010 Interfacial instability of turbulent two-phase stratified flow: pressure-driven flow and non-Newtonian layers. J. Non-Newtonian Fluid Mech. 165, 489508.Google Scholar
Ó Náraigh, L. & Spelt, P. D. M. 2012 An analytical connection between temporal and spatio-temporal growth rates in linear stability analysis. arXiv:1203.1797v1.Google Scholar
Ó Náraigh, L., Spelt, P. D. M., Matar, O. K. & Zaki, T. A. 2011a Interfacial instability of turbulent two-phase stratified flow: pressure-driven flow and thin liquid films. Intl J. Multiphase Flow 37, 812830.CrossRefGoogle Scholar
Ó Náraigh, L., Spelt, P. D. M. & Zaki, T. A. 2011b Turbulent flow over a liquid layer revisited: multi-equation turbulence modelling. J. Fluid Mech. 683, 357394.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rees, S. J. & Juniper, M. P. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309.Google Scholar
Shampine, L. F., Reichelt, M. W. & Kierzenka, J. A. 1999 Solving index-I DAEs in MATLAB and Simulink. SIAM Rev. 41, 538.CrossRefGoogle Scholar
Valluri, P., Ó Náraigh, L., Ding, H. & Spelt, P. D. M. 2010 Linear and nonlinear spatio-temporal instability in laminar two-layer flows. J. Fluid Mech. 656, 458480.CrossRefGoogle Scholar
Yih, C. S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337.Google Scholar