Hostname: page-component-5cf477f64f-n7lw4 Total loading time: 0 Render date: 2025-04-08T13:01:27.205Z Has data issue: false hasContentIssue false

Absolute instability in the higher-generation airways: a pathway for airway closure

Published online by Cambridge University Press:  04 March 2025

Ramkarn Patne*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
*
Email address for correspondence: [email protected]

Abstract

Experiments on microfluidic core–annular flows demonstrated a transition from a continuous core jet to core-fluid drops and slugs separated by the annular fluid films/slugs due to absolute instability. The flows in the higher-generation airways could be modelled as core–annular flow with the laminar core airflow and annular airway surface liquid (ASL). Thus, if an absolute instability exists in the higher-generation airways, then it could lead to ASL film/slug-induced airway closure, necessitating the present study. Taking cues from previous studies, we derive an evolution equation using the lubrication approximation. The analysis, using the dispersion relation obtained from the evolution equation, predicts the existence of the critical capillary number $Ca_c$ such that, for $Ca < Ca_c$, the flow will be absolutely unstable for vanishing Reynolds number $Re$. The parameter $Ca_c$ exhibits the scaling as $Ca_c \sim (1-H)^2/\mu _r$, where $1-H$ is the dimensionless thickness of the ASL, and $\mu _r$ is the ratio of the air viscosity to the ASL viscosity. In agreement with the experimental observations, for a healthy lung, the analysis predicts absolute instability triggered airway closure only at the end of expiration during a breathing cycle. For a diseased lung, the ASL thickness and viscosity drastically increase the possibility of absolutely unstable flow and, thus, airway closure. Increasing inertial effect (i.e. $Re$) exacerbates airway closure by curtailing the convectively unstable region. Similarly, the ASL shear thinning widens the absolute instability parametric region. Thus, the present analysis demonstrates a pathway for airway closure in the higher-generation airways due to absolute instability.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, I.D., Davis, A.M.J. & Smith, S.G.L. 2008 Asymmetric channel divider in stokes flow. SIAM J. Appl. Math. 68, 14391463.CrossRefGoogle Scholar
Badr, H., Dennis, S.C.R., Bates, S. & Smith, F.T. 1985 Numerical and asymptotic solutions for merging flow through a channel with an upstream splitter plate. J. Fluid Mech. 156, 6381.CrossRefGoogle Scholar
Bassom, A.P., Blyth, M.G. & Papageorgiou, G.T. 2012 Using surfactants to stabilize two-phase pipe flows of core-annular type. J. Fluid Mech. 704, 333359.CrossRefGoogle Scholar
Briggs, R.J. 1964 Electron-stream Interaction with Plasmas. MIT Press.CrossRefGoogle Scholar
Burger, E.J. & Macklem, P. 1968 Airway closure: demonstration breathing 100 % O$_2$ at low lung volumes and by N$_2$ washout. J. Appl. Physiol. 25, 139148.CrossRefGoogle Scholar
Camassa, R., Ogrosky, H.R. & Olander, J. 2014 Viscous film flow coating the interior of a vertical tube. Part 1. Gravity-driven flow. J. Fluid Mech. 745, 682715.CrossRefGoogle Scholar
Camassa, R., Ogrosky, H.R. & Olander, J. 2017 Viscous film-flow coating the interior of a vertical tube. Part 2. Air-driven flow. J. Fluid Mech. 825, 10561090.CrossRefGoogle Scholar
Castillo, H.A. & Wilson, H.J. 2017 Towards a mechanism for instability in channel flow of highly shear-thinning viscoelastic fluids. J. Non-Newtonian Fluid Mech. 247, 1521.CrossRefGoogle Scholar
Chen, K.P. 1991 Interfacial instability due to elastic stratification in concentric coextrusion of two viscoelastic fluids. J. Non-Newtonian Fluid Mech. 40, 155175.CrossRefGoogle Scholar
Chen, Z., Zhong, M., Luo, Y., Deng, L., Hu, Z. & Song, Y. 2019 Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques. Respir. Res. 20, 274.CrossRefGoogle ScholarPubMed
Crystal, R. 1997 The Lung: Scientific Foundations. Wiley.Google Scholar
Dietze, G.F. 2022 Falling Liquid Films in Narrow Geometries and Other Thin Film Flows. Fluids Mechanics. Universite Paris-Saclay.Google Scholar
Dietze, G.F., Lavalle, G. & Ruyer-Quil, C. 2020 Films in narrow tubes: occlusion scenarios. J. Fluid Mech. 894, A17.CrossRefGoogle Scholar
Dietze, G.F. & Ruyer-Quil, C. 2015 Films in narrow tubes. J. Fluid Mech. 762, 68109.CrossRefGoogle Scholar
Erken, O., Fazla, B., Muradoglu, M., Izbassarov, D., Romanò, F. & Grotberg, J.B. 2023 Effects of elastoviscoplastic properties of mucus on airway closure in healthy and pathological conditions. Phys. Rev. Fluids 8, 053102.CrossRefGoogle Scholar
Erken, O., Romano, F., Grotberg, J.B. & Muradoglu, M. 2021 Capillary instability of a two-layer annular film: an airway closure model. J. Fluid Mech. 934, A7.CrossRefGoogle Scholar
Furlow, P.W. & Mathisen, D.J. 2018 Surgical anatomy of the trachea. Ann. Cardiothorac. Surg. 7 (2), 255260.CrossRefGoogle ScholarPubMed
Gaurav, , & Shankar, V. 2007 Stability of gravity-driven free-surface flow past a deformable solid layer at zero and finite Reynolds number. Phys. Fluids 19, 024105.CrossRefGoogle Scholar
Gaurav, , & Shankar, V. 2013 Manipulation of instabilities in core-annular flows using a deformable solid layer. Phys. Fluids 25, 014104.CrossRefGoogle Scholar
Govindarajan, R. & Sahu, K.C. 2014 Instabilities in viscosity-stratified flows. Annu. Rev. Fluid Mech. 46, 331353.CrossRefGoogle Scholar
Grotberg, J.B. 2011 Respiratory fluid mechanics. Phys. Fluids 23 (2), 021301.CrossRefGoogle ScholarPubMed
Grotberg, J.B. & Jensen, O.E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.CrossRefGoogle Scholar
Guillot, P., Colin, A. & Ajdari, A. 2008 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Phys. Rev. E 78, 016307.CrossRefGoogle Scholar
Guillot, P., Colin, A., Utada, A.S. & Ajdari, A. 2007 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99, 104502.CrossRefGoogle ScholarPubMed
Halpern, D., Fujioka, H. & Grotberg, J.B. 2010 The effect of viscoelasticity on the stability of a pulmonary airway liquid layer. Phys. Fluids 22, 011901.CrossRefGoogle ScholarPubMed
Halpern, D & Grotberg, J.B. 1992 Fluid-elastic instabilities of liquid-lined flexible tubes. J. Fluid Mech. 244, 615632.CrossRefGoogle Scholar
Halpern, D. & Grotberg, J.B. 1993 Surfactant effects on fluid-elastic instabilitiies of liquid-lined flexible tubes: a model of airway closure. Trans. ASME J. Biomech. Engng 115, 271277.CrossRefGoogle Scholar
Hamed, R. & Fiegel, J. 2014 Synthetic tracheal mucus with native rheological and surface tension properties. J. Biomed. Mater. Res. A 102 (6), 17881798.CrossRefGoogle ScholarPubMed
Heil, M., Hazel, A.L. & Smith, J.A. 2008 The mechanics of airway closure. Respir. Physiol. Neurobiol. 163, 214–21.CrossRefGoogle ScholarPubMed
Hill, D.B., et al. 2014 A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PLoS One 138, e87681.CrossRefGoogle Scholar
Hu, H.H. & Patankar, N. 1995 Non-axisymmetric stability of core-anular flow. J. Fluid Mech. 290, 213224.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 173537.CrossRefGoogle Scholar
Hwang, S.H., Litt, M. & Forsman, W.C. 1969 Rheological properties of mucus. Rheol. Acta 8, 438448.CrossRefGoogle Scholar
Incropera, F.P., DeWitt, D.P., Bergman, T.L. & Lavine, A.S. 2007 Fundamentals of Heat and Mass Transfer. Wiley.Google Scholar
Jain, M. & Sznajder, J.I. 2007 Bench to bed-side review: distal airways in acute respiratory distress syndrome. Crit. Care 11, 206.CrossRefGoogle Scholar
Joseph, D.D., Bai, R., Chen, K.P. & Renardy, Y.Y. 1997 Core-annular flows. Annu. Rev. Fluid Mech. 29, 6590.CrossRefGoogle Scholar
Karamaoun, C., Sobac, B., Mauroy, B., Van Muylem, A. & Haut, B. 2018 New insights into the mechanisms controlling the bronchial mucus balance. PLos One 13, e0199319.CrossRefGoogle ScholarPubMed
Kleinstreuer, C. & Zhang, Z. 2009 An adjustable triple-bifurcation unit (TBU) model for air-particle flow simulations in human tracheobronchial airways. Trans. ASME J. Biomech. Engng 131, 021007.CrossRefGoogle Scholar
Kleinstreuer, C. & Zhang, Z. 2010 Air flow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech. 42, 301–34.CrossRefGoogle Scholar
Kupfer, K., Bers, A. & Ram, A.K. 1987 The cusp map in complex-frequency plane for absolute instabilities. Phys. Fluids 30, 10.CrossRefGoogle Scholar
Lafforgue, O., Seyssiecq-Guarante, I., Poncet, S. & Favier, J. 2017 Rheological properties of synthetic mucus for airway clearance. J. Biomed. Mater. Res. A 106, 386.CrossRefGoogle ScholarPubMed
Lai, S.K., Wang, Y.Y., Wirtz, D. & Hanes, J. 2009 Micro- and macrorheology of mucus: implications for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61, 86100.CrossRefGoogle Scholar
Li, M., Xu, S. & Kumacheva, E. 2000 Convection in polymeric fluids subjected to vertical temperature gradients. Macromolecules 33, 49724978.CrossRefGoogle Scholar
Lin, C.L., Tawhai, M.H., McLennan, G. & Hoffman, E.A. 2007 Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intrathoracic airways. Respir. Physiol. Neurobiol. 157, 295309.CrossRefGoogle Scholar
Mall, M.A. 2016 Unplugging mucus in cystic fibrosis and chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 13, S177S185.Google ScholarPubMed
Montaudon, M., Desbarats, P., Berger, P., De Dietrich, G., Marthan, R. & Laurent, F. 2007 Assessment of bronchial wall thickness and lumen diameter in human adults using multi-detector computed tomography: comparison with theoretical models. J. Anat. 211 (5), 579588.CrossRefGoogle Scholar
Moriarty, J.A. & Grotberg, J.B. 1999 Flow-induced instabilities of a mucus-serous bilayer. J. Fluid Mech. 397, 122.CrossRefGoogle Scholar
Muradoglu, M., Romano, F., Fujioka, H. & Grotberg, J.B. 2021 Effects of surfactant on propagation and rupture of a liquid plug in a tube. J. Fluid Mech. 872, 407.CrossRefGoogle Scholar
Oron, A., Davis, S.H. & Bankoff, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Patne, R. 2021 Purely elastic instabilities in the airways and oral area. J. Fluid Mech. 928, A22.CrossRefGoogle Scholar
Patne, R. 2024 Effect of inhaled air temperature on mucus layer in the proximal airways. J. Fluid Mech. 978, A15.CrossRefGoogle Scholar
Patne, R., Agnon, Y. & Oron, A. 2021 Thermocapillary instabilities in a liquid layer subjected to an oblique temperature gradient. J. Fluid Mech. 906, A12.CrossRefGoogle Scholar
Patne, R. & Chandarana, J. 2023 Spatio-temporal dynamics of a two-layer pressure-driven flow subjected to a wall-normal temperature gradient. J. Fluid Mech. 957, A11.CrossRefGoogle Scholar
Patne, R., Mandloi, S., Shankar, V. & Subramanian, G. 2024 Instabilities in strongly shear-thinning viscoelastic flows through channels and tubes. arXiv:2408.01004Google Scholar
Patne, R. & Ramon, G.Z. 2020 Stability of fluid flows coupled by a deformable solid layer. J. Fluid Mech. 905, A36.CrossRefGoogle Scholar
Patne, R. & Shankar, V. 2017 Absolute and convective instability in combined Couette–Poiseuille flow past a neo-Hookean solid. Phys. Fluids 29, 124104.CrossRefGoogle Scholar
Patne, R. & Shankar, V. 2020 Instability induced by wall deformability in sliding Couette flow. Phys. Fluids 32, 114102.CrossRefGoogle Scholar
Pedley, T.J. 1977 Pulmonary fluid dynamics. Annu. Rev. Fluid Mech. 9, 229274.CrossRefGoogle Scholar
Romano, F., Fujioka, H., Muradoglu, M. & Grotberg, J.B. 2019 Liquid plug formation in an airway closure model. Phys. Rev. Fluids 4 (9), 093103.CrossRefGoogle Scholar
Romano, F., Muradoglu, M., Fujioka, H. & Grotberg, J.B. 2021 The effect of viscoelasticity in an airway closure model. J. Fluid Mech. 913, 126.CrossRefGoogle Scholar
Romano, F., Muradoglu, M. & Grotberg, J.B. 2022 Effect of surfactant in an airway closure model. Phys. Rev. Fluids 7, 093103.CrossRefGoogle Scholar
Sahu, K.C. 2021 A new linearly unstable mode in the core-annular flow of two immiscible fluids. J. Fluid Mech. 918, A11.CrossRefGoogle Scholar
Salin, D. & Talon, L. 2019 Revisiting the linear stability analysis and absolute-convective transition of two fluid core annular flow. J. Fluid Mech. 865, 743761.CrossRefGoogle Scholar
Samanta, A. 2013 Effect of surfactant on two-layer channel flow. J. Fluid Mech. 735, 519552.CrossRefGoogle Scholar
Schatz, M.F. & Neitzel, G.P. 2001 Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33, 93127.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Shah, P.L., Scott, S.F., Knight, R.A., Marriott, C., Ranasinha, C. & Hodson, M.E. 1996 In vivo effects of recombinant human DNase I on sputum in patients with cystic fibrosis. Thorax 51, 119125.CrossRefGoogle ScholarPubMed
Shemilt, J.D., Horsley, A., Jensen, O.E., Thompson, A.B. & Whitfield, C.A. 2022 Surface-tension-driven evolution of a viscoplastic liquid coating the interior of a cylindrical tube. J. Fluid Mech. 944, A22.CrossRefGoogle Scholar
Shemilt, J.D., Horsley, A., Jensen, O.E., Thompson, A.B. & Whitfield, C.A. 2023 Surfactant amplifies yield-stress effects in the capillary instability of a film coating a tube. J. Fluid Mech. 971, A24.CrossRefGoogle ScholarPubMed
Standring, S. 2016 Gray's Anatomy: The Anatomical Basis of Clinical Practice. Elsevier.Google Scholar
Stocker, J.R. & Duck, P.W. 1995 Stationary perturbations of Couette–Poiseuille flow: the flow development in long cavities and channels. J. Fluid Mech. 292, 153182.CrossRefGoogle Scholar
Trefethen, L.N. 2000 Spectral Methods in MATLAB. SIAM.CrossRefGoogle Scholar
Utada, A.S., Fernandez-Nieves, A., Gordillo, J.M. & Weitz, D.A. 2008 Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100, 014502.CrossRefGoogle Scholar
Utada, A.S., Fernandez-Nieves, A., Stone, H.A. & Weitz, D.A. 2007 Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 99, 094502.CrossRefGoogle ScholarPubMed
Wei, H.-H. 2005 a Marangoni destabilization on a core-annular film flow due to the presence of a surfactant. Phys. Fluids 17, 027101.CrossRefGoogle Scholar
Wei, H.H. 2005 b Thermocapillary instability of core-annular flows. Phys. Fluids 17, 102102.CrossRefGoogle Scholar
Wei, H.-H. & Rumschitzki, D.S. 2005 The effect of insoluble surfactants on the linear stability of a core-annular flow. J. Fluid Mech. 541, 115142.CrossRefGoogle Scholar
Weibel, E.R. & Gomez, D.M. 1962 Architecture of the human lung. Science 137, 577.CrossRefGoogle ScholarPubMed
White, F.M. 2003 Viscous Fluid Flow. McGraw-Hill.Google Scholar
White, J. & Heil, M. 2005 Three-dimensional instabilities of liquid-lined elastic tubes: a thin-film fluid-structure interaction model. Phys. Fluids 17, 031506.CrossRefGoogle Scholar
White, J.L. & Metzner, A.B. 1963 Development of constitutive equations for polymeric melts and solutions. J. Appl. Polym. Sci. 7, 18671889.CrossRefGoogle Scholar
Widdicombe, J. 1997 Airway and alveolar permeability and surface liquid thickness: theory. J. Appl. Physiol. 82 (1), 312.CrossRefGoogle ScholarPubMed
Widdicombe, J.H. & Widdicombe, J.G. 1995 Regulation of human airway surface liquid. Respir. Physiol. 99 (1), 312.CrossRefGoogle ScholarPubMed
Wilson, H.J. & Loridan, V. 2015 Linear instability of a highly shear-thinning fluid in channel flow. J. Non-Newtonian Fluid Mech. 223, 200208.CrossRefGoogle Scholar
Wilson, H.J. & Rallison, J.M. 1999 Instability of channel flow of a shear-thinning White-Metzner fluid. J. Non-Newtonian Fluid Mech. 87, 7596.CrossRefGoogle Scholar
Wilson, H.J., Renardy, M. & Renardy, Y. 1999 Structure of the spectrum in zero Reynolds number shear flow of the UCM and Oldroyd-B liquids. J. Non-Newtonian Fluid Mech. 80, 251268.CrossRefGoogle Scholar
Xia, G., Tawhai, M.H., Hoffman, E.A. & Lin, C.-L. 2010 Airway wall stiffening increases peak wall shear stress: a fluid–structure interaction study in rigid and compliant airways. Ann. Biomed. Engng 38 (5), 18361853.CrossRefGoogle Scholar
Yeo, K.S., Khoo, B.C. & Zhao, H.Z. 1999 The convective and absolute instability of fluid flow over viscoelastic compliant layers. J. Sound Vib. 223 (3), 379398.CrossRefGoogle Scholar
Yeo, K.S., Khoo, B.C. & Zhao, H.Z. 2001 Turbulent boundary layer over a compliant surface: absolute and convective instabilities. J. Fluid Mech. 449, 141168.CrossRefGoogle Scholar
Yih, C.-S. 1967 Instability due to viscosity stratification. J. Fluid Mech. 27, 337350.CrossRefGoogle Scholar
Zhou, Z.-Q., Peng, J., Zhang, Y.-J. & Zhuge, W.-L. 2014 Instabilities of viscoelastic liquid film coating tube in the presence of surfactant. J. Non-Newtonian Fluid Mech. 204, 94103.CrossRefGoogle Scholar