Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-02T21:43:04.087Z Has data issue: false hasContentIssue false

3D flow measurements in regular breaking waves past a fixed submerged bar on an impermeable plane slope

Published online by Cambridge University Press:  03 August 2016

M. Clavero
Affiliation:
Instituto Interuniversitario de Investigación del Sistema Tierra, Universidad de Granada, Avda. del Mediterráneo s/n, 18006 Granada, Spain
S. Longo*
Affiliation:
Dipartimento di Ingegneria Civile, dell’Ambiente, del Territorio e Architettura (DICATeA), Università di Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy
L. Chiapponi
Affiliation:
Dipartimento di Ingegneria Civile, dell’Ambiente, del Territorio e Architettura (DICATeA), Università di Parma, Parco Area delle Scienze, 181/A, 43124 Parma, Italy
M. A. Losada
Affiliation:
Instituto Interuniversitario de Investigación del Sistema Tierra, Universidad de Granada, Avda. del Mediterráneo s/n, 18006 Granada, Spain
*
Email address for correspondence: [email protected]

Abstract

The velocity fields induced by regular breaking waves past a fixed bar on a 1 : 10 rigid plane slope were measured and analysed using a volumetric particle-tracking velocimetry system. Under specific conditions, the interaction between waves and morphological features steepens the waves, which eventually break. The geometry of the boundaries of the present experiments is common in natural environments, where reefs, sand and gravel bars, and submerged coastal structures, interact with the incoming wave field, ‘affecting’ the transport budget of substances (sediment, nutrients and pollutants), with relevant consequences on the water quality. The aims of the present work are the analysis of the flow field in the breaker, and the quantification of the terms in the equations usually adopted for modelling the flow and the turbulence. Two sets of attacking monochromatic wave trains with different periods and heights were used to generate a data set of instantaneous velocity, which was further analysed to extract turbulence. The measurement volume extended from the wave crest to a portion of the domain below the wave trough. The balance of linear momentum for the average field and the balance of turbulence were scrutinized, and included all the terms in a three-dimensional (3D) approach. The analysed data and results are original and novel because they include all the contributions derived from the 3D structure of a real flow field, and constitute a huge data set for the calibration of numerical codes.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baquerizo, A., Losada, M., Smith, J. & Kobayashi, N. 1997 Cross-shore variation of wave reflection from beaches. ASCE J. Waterway Port Coastal Ocean Engng 123 (5), 274279.CrossRefGoogle Scholar
Beguier, C., Giralt, F., Fulachier, L. & Keffer, J. 1978 Negative production in turbulent shear flows. In Structure and Mechanisms of Turbulence II (ed. Fiedler, H.), Lecture Notes in Physics, vol. 76, pp. 2235. Springer.Google Scholar
Bendat, J. S. & Piersol, A. G. 2000 Random Data Analysis and Measurement Procedures. Wiley.Google Scholar
Brutsché, K. E., Wang, P., Beck, T. M., Rosati, J. D. & Legault, K. R. 2014 Morphological evolution of a submerged artificial nearshore berm along a low-wave microtidal coast, Fort Myers Beach, west-central Florida, USA. Coast. Engng 91, 2944.Google Scholar
Chang, K.-A. & Liu, P.-F. 1998 Velocity, acceleration and vorticity under a breaking wave. Phys. Fluids 10 (1), 327329.Google Scholar
Cheng, J. & Wang, P. 2015 Extracting turbulence under breaking waves in the surf zone. ASCE J. Waterway Port Coastal Ocean Engng 141 (6), 06015003.Google Scholar
Christensen, E. D. & Deigaard, R. 2001 Large eddy simulation of breaking waves. Coast. Engng 42 (1), 5386.CrossRefGoogle Scholar
Cowen, E., Mei Sou, I., Liu, P. & Raubenheimer, B. 2003 Particle image velocimetry measurements within a laboratory-generated swash zone. J. Engng Mech. 129 (10), 11191129.Google Scholar
Dabiri, D. & Gharib, M. 1997 Experimental investigation of the vorticity generation within a spilling water wave. J. Fluid Mech. 330, 113139.CrossRefGoogle Scholar
De Serio, F. & Mossa, M. 2006 Experimental study on the hydrodynamics of regular breaking waves. Coast. Engng 53 (1), 99113.Google Scholar
Deigaard, R. & Fredsøe, J. 1989 Shear stress distribution in dissipative water waves. Coast. Engng 13 (4), 357378.Google Scholar
Derakhti, M. & Kirby, J. T. 2014 Bubble entrainment and liquid–bubble interaction under unsteady breaking waves. J. Fluid Mech. 761, 464506.CrossRefGoogle Scholar
Doering, J. C. & Donelan, M. A. 1997 Acoustic measurements of the velocity field beneath shoaling and breaking waves. Coast. Engng 32 (4), 321330.Google Scholar
Druault, P., Guibert, P. & Alizon, F. 2005 Use of proper orthogonal decomposition for time interpolation from PIV data. Exp. Fluids 39 (6), 10091023.Google Scholar
Emarat, N., Forehand, D. I. M., Christensen, E. D. & Greated, C. A. 2012 Experimental and numerical investigation of the internal kinetics of a surf-zone plunging breaker. Eur. J. Mech. (B/Fluids) 32, 116.CrossRefGoogle Scholar
Florens, E., Eiff, O. & Moulin, F. 2013 Defining the roughness sublayer and its turbulence statistics. Exp. Fluids 54 (4), 115.Google Scholar
Gallagher, E. L., Elgar, S. & Guza, R. T. 1998 Observations of sand bar evolution on a natural beach. J. Geophys. Res. 103 (C2), 32033215.Google Scholar
Gayen, B. & Sarkar, S. 2011 Negative turbulent production during flow reversal in a stratified oscillating boundary layer on a sloping bottom. Phys. Fluids 23 (10), 101703 (10).Google Scholar
Govender, K., Michallet, H., Alport, M. J., Pillay, U., Mocke, G. P. & Mory, M. 2009 Video {DCIV} measurements of mass and momentum fluxes and kinetic energies in laboratory waves breaking over a bar. Coast. Engng 56 (8), 876885.Google Scholar
Green, M. A., Rowley, C. W. & Haller, G. 2007 Detection of Lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.Google Scholar
Jensen, A., Mayer, S. & Pedersen, G. K. 2005 Experiments and computation of onshore breaking solitary waves. Meas. Sci. Technol. 16 (10), 1913.Google Scholar
Kimmoun, O. & Branger, H. 2007 A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach. J. Fluid Mech. 588, 353397.Google Scholar
Kitzhofer, J., Nonn, T. & Brcker, C. 2011 Generation and visualization of volumetric PIV data fields. Exp. Fluids 51 (6), 14711492.Google Scholar
Lakehal, D. & Liovic, P. 2011 Turbulence structure and interaction with steep breaking waves. J. Fluid Mech. 674, 522577.Google Scholar
Li, L. & Dalrymple, R. A. 1998 Instabilities of the undertow. J. Fluid Mech. 369, 175190.Google Scholar
Liberzon, A., Lthi, B., Guala, M., Kinzelbach, W. & Tsinober, A. 2005 Experimental study of the structure of flow regions with negative turbulent kinetic energy production in confined three-dimensional shear flows with and without buoyancy. Phys. Fluids 17 (9), 095110.Google Scholar
Lin, J. C. & Rockwell, D. 1994 Instantaneous structure of a breaking wave. Phys. Fluids 6 (9), 28772879.Google Scholar
Longo, S. 2003 Turbulence under spilling breakers using discrete wavelets. Exp. Fluids 34 (2), 181191.Google Scholar
Longo, S. 2009 Vorticity and intermittency within the pre-breaking region of spilling breakers. Coast. Engng 56 (3), 285296.Google Scholar
Longo, S. 2010 Experiments on turbulence beneath a free surface in a stationary field generated by a crump weir: free-surface characteristics and the relevant scales. Exp. Fluids 49 (6), 13251338.Google Scholar
Longo, S. 2011 Experiments on turbulence beneath a free surface in a stationary field generated by a crump weir: turbulence structure and correlation with the free surface. Exp. Fluids 50 (1), 201215.CrossRefGoogle Scholar
Longo, S. 2012 Wind-generated water waves in a wind tunnel: free surface statistics, wind friction and mean air flow properties. Coast. Engng 61 (1), 2741.Google Scholar
Longo, S., Dominguez, F. M. & Valiani, A. 2015 The turbulent structure of the flow field generated by a hydrofoil in stalling condition beneath a water–air interface. Exp. Therm. Fluid Sci. 61, 3447.Google Scholar
Longo, S., Liang, D., Chiapponi, L. & Aguilera Jimenez, L. 2012 Turbulent flow structure in experimental laboratory wind-generated gravity waves. Coast. Engng 64, 115.Google Scholar
Longo, S., Petti, M. & Losada, I. 2002 Turbulence in the swash and surf zones: a review. Coast. Engng 45 (3–4), 129147.Google Scholar
Losada, I., Silva, R. & Losada, M. A. 1996 3-D non-breaking regular wave interaction with submerged breakwaters. Coast. Engng 28 (1–4), 229248.Google Scholar
Lubin, P. & Glockner, S. 2015 Numerical simulations of three-dimensional plunging breaking waves: generation and evolution of aerated vortex filaments. J. Fluid Mech. 767, 364393.Google Scholar
Nezu, I. & Nakagawa, H. I. 1993 Turbulence in Open Channel Flows. (IAHR Monograph Series) , Balkema.Google Scholar
Ohm, K. I. & Li, H. Y. 2000 Particle-tracking velocimetry with new algorithms. Meas. Sci. Technol. 11 (6), 603616.CrossRefGoogle Scholar
Olfateh, M., Ware, P., Callaghan, D. P., Nielsen, P. & Baldock, T. E.2016 Momentum transfer under laboratory wind waves (submitted).Google Scholar
Peregrine, D. H. 1983 Breaking waves on beaches. Annu. Rev. Fluid Mech. 15, 149178.Google Scholar
Petti, M. & Longo, S. 2001a Hydrodynamics in the swash zone. Intl J. Offshore Polar Engng 11 (2), 202210.Google Scholar
Petti, M. & Longo, S. 2001b Turbulence experiments in the swash zone. Coast. Engng 43 (1), 124.Google Scholar
Rivero, F. J. & Arcilla, A. S. 1995 On the vertical distribution of 〈˜u˜w. Coast. Engng 25 (3–4), 137152.Google Scholar
Sharp, K. V., Hill, D., Troolin, D., Walters, G. & Lai, W. 2010 Volumetric three-component velocimetry measurements of the turbulent flow around a Rushton turbine. Exp. Fluids 48 (1), 167183.Google Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I, II and III. Q. Appl. Maths XLV (3), 561590.Google Scholar
Skyner, D. 1996 A comparison of numerical predictions and experimental measurements of the internal kinematics of a deep-water plunging wave. J. Fluid Mech. 315, 5164.CrossRefGoogle Scholar
Stive, M. J. F. & Wind, H. G. 1982 A study of radiation stress and set-up in the nearshore region. Coast. Engng 6 (1), 125.Google Scholar
Sumer, B. M., Guner, H. A. A., Hansen, N. M., Fuhrman, D. R. & Fredsoe, J. 2013 Laboratory observations of flow and sediment transport induced by plunging regular waves. J. Geophys. Res. 118 (11), 61616182.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. Cambridge University Press.Google Scholar
Ting, F. C. K. & Kirby, J. 1994 Observation of undertow and turbulence in a laboratory surf zone. Coast. Engng 24, 5180.Google Scholar
Ting, F. C. K. & Kirby, J. T. 1995 Dynamics of surf-zone turbulence in a strong plunging breaker. Coast. Engng 24, 177204.Google Scholar
Ting, F. C. K. & Kirby, J. 1996 Dynamics of surf-zone turbulence in a spilling breaker. Coast. Engng 27, 131160.Google Scholar
Ting, F. C. K. & Reimnitz, J. 2015 Volumetric velocity measurements of turbulent coherent structures induced by plunging regular waves. Coast. Engng 104, 93112.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Wallace, J. M. 2012 Highlights from 50 years of turbulent boundary layer research. J. Turbul. 13, N53.Google Scholar
Watanabe, S. & Mungal, M. L. 2005 Velocity fields in mixing-enhanced compressible shear layers. J. Fluid Mech. 522, 141177.Google Scholar