Article contents
Mechanism of programmed obesity: altered central insulin sensitivity in growth-restricted juvenile female rats
Published online by Cambridge University Press: 21 February 2013
Abstract
Intrauterine growth-restricted (IUGR) offspring are at increased risk of adult obesity, as a result of changes in energy balance mechanisms. We hypothesized that impairment of hypothalamic insulin signaling contributes to hyperphagia in IUGR offspring. Study pregnant dams were 50% food restricted from days 10 to 21 to create IUGR newborns. At 5 weeks of age, food intake was measured following intracerebroventricular (icv) injection of vehicle or insulin (10 mU) in control and IUGR pups. At 6 weeks of age, with pups in fed or fasted (48 h) states, pups received icv vehicle or insulin after which they were decapitated, and hypothalamic arcuate (ARC) nucleus dissected for RNA and protein expression. IUGR rats consumed more food than controls under basal conditions, consistent with upregulated ARC phospho AMP-activated protein kinase (pAMPK) and neuropeptide Y (NPY). Insulin acutely reduced food intake in both control and IUGR rats. Consistent with anorexigenic stimulation, central insulin decreased AMP-activated protein kinase and NPY mRNA expression and increased proopiomelanocortin mRNA expression and pAkt, with significantly reduced responses in IUGR as compared with controls. Despite feeding, IUGR offspring exhibit a persistent state of orexigenic stimulation in the ARC nucleus and relative resistance to the anorexigenic effects of icv insulin. These results suggest that impaired insulin signaling contributes to hyperphagia and obesity in IUGR offspring.
- Type
- Original Article
- Information
- Journal of Developmental Origins of Health and Disease , Volume 4 , Issue 3 , June 2013 , pp. 239 - 248
- Copyright
- Copyright © Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2013
References
- 3
- Cited by