Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-29T02:09:46.601Z Has data issue: false hasContentIssue false

Excessive early-life cholesterol exposure may have later-life consequences for nonalcoholic fatty liver disease

Published online by Cambridge University Press:  15 April 2020

Jerad H. Dumolt
Affiliation:
Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, Buffalo, NY, USA14214
Mulchand S. Patel
Affiliation:
Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA14214
Todd C. Rideout*
Affiliation:
Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, Buffalo, NY, USA14214
*
Address for correspondence: Todd C Rideout, Department of Exercise and Nutrition Sciences, University at Buffalo, Farber Hall G10, Buffalo, NY, 14214, USA. Email: [email protected].

Abstract

The in utero and immediate postnatal environments are recognized as critical windows of developmental plasticity where offspring are highly susceptible to changes in the maternal metabolic milieu. Maternal hypercholesterolemia (MHC) is a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during pregnancy which can program metabolic dysfunction in offspring, including dysregulation of hepatic lipid metabolism. Although there is currently no established reference range MHC, a loosely defined cutoff point for total cholesterol >280 mg/dL in the third trimester has been suggested. There are several unanswered questions regarding this condition particularly with regard to how the timing of cholesterol exposure influences hepatic lipid dysfunction and the mechanisms through which these adaptations manifest in adulthood. Gestational hypercholesterolemia increased fetal hepatic lipid concentrations and altered lipid regulatory mRNA and protein content. These early changes in hepatic lipid metabolism are evident in the postweaning environment and persist into adulthood. Further, changes to hepatic epigenetic signatures including microRNA (miR) and DNA methylation are observed in utero, at weaning, and are evident in adult offspring. In conclusion, early exposure to cholesterol during critical developmental periods can predispose offspring to the early development of nonalcoholic fatty liver disease (NAFLD) which is characterized by altered regulatory function beginning in utero and persisting throughout the life cycle.

Type
Review
Copyright
© Cambridge University Press and the International Society for Developmental Origins of Health and Disease 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gluckman, PD, Hanson, MA, Buklijas, T. A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis. 2010; 1(1), 618.CrossRefGoogle ScholarPubMed
Fleming, TP, Watkins, AJ, Velazquez, MA, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018; 391(10132), 18421852.CrossRefGoogle ScholarPubMed
Wells, JC. The thrifty phenotype: An adaptation in growth or metabolism? Am J Hum Biol. 2011; 23(1), 6575.CrossRefGoogle ScholarPubMed
Hales, CN, Barker, DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992; 35(7), 595601.CrossRefGoogle ScholarPubMed
Temple, JL, Cordero, P, Li, J, Nguyen, V, Oben, JA. A Guide to Non-Alcoholic Fatty Liver Disease in Childhood and Adolescence. Int J Mol Sci. 2016; 17(6), 947.CrossRefGoogle ScholarPubMed
Stewart, MS, Heerwagen, MJ, Friedman, JE. Developmental programming of pediatric nonalcoholic fatty liver disease: redefining the"first hit”. Clin Obstet Gynecol. 2013; 56(3), 577590.CrossRefGoogle ScholarPubMed
Hagstrom, H, Hoijer, J, Ludvigsson, JF, et al. Adverse outcomes of pregnancy in women with non–alcoholic fatty liver disease. Liver Int. 2016; 36(2), 268274.CrossRefGoogle ScholarPubMed
Liu, J, Han, L, Zhu, L, Yu, Y. Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats. Lipids Health Dis. 2016; 15, 27.CrossRefGoogle ScholarPubMed
Lytle, KA, Bush, NC, Triay, JM, et al. Hepatic fatty acid balance and hepatic fat content in severely obese humans. J Clin Endocrinol Metab. 2019. doi: 10.1210/jc.2019-00875.CrossRefGoogle Scholar
Kim, EJ, Kim, BH, Seo, HS, et al. Cholesterol-induced non-alcoholic fatty liver disease and atherosclerosis aggravated by systemic inflammation. PLoS One. 2014; 9(6), e97841.CrossRefGoogle ScholarPubMed
Zhang, QQ, Lu, LG. Nonalcoholic fatty liver disease: dyslipidemia, risk for cardiovascular complications, and treatment strategy. J Clin Transl Hepatol. 2015; 3(1), 7884.Google ScholarPubMed
Kneeman, JM, Misdraji, J, Corey, KE. Secondary causes of nonalcoholic fatty liver disease. Therap Adv Gastroenterol. 2012; 5(3), 199207.CrossRefGoogle ScholarPubMed
Li, M, Reynolds, CM, Segovia, SA, Gray, C, Vickers, MH. Developmental programming of nonalcoholic fatty liver disease: the effect of early life nutrition on susceptibility and disease severity in later life. Biomed Res Int. 2015; 2015, 437107.Google ScholarPubMed
Brumbaugh, DE, Tearse, P, Cree-Green, M, et al. Intrahepatic fat is increased in the neonatal offspring of obese women with gestational diabetes. J Pediat. 2013; 162(5), 930936 e931.CrossRefGoogle ScholarPubMed
Patel, S, Lawlor, DA, Callaway, M, Macdonald-Wallis, C, Sattar, N, Fraser, A. Association of maternal diabetes/glycosuria and pre-pregnancy body mass index with offspring indicators of non-alcoholic fatty liver disease. Bmc Pediatr. 2016; 16, 47.CrossRefGoogle ScholarPubMed
Modi, N, Murgasova, D, Ruager-Martin, R, et al. The influence of maternal body mass index on infant adiposity and hepatic lipid content. Pediatr Res. 2011; 70(3), 287291.CrossRefGoogle ScholarPubMed
Ayonrinde, OT, Adams, LA, Mori, TA, et al. Sex differences between parental pregnancy characteristics and nonalcoholic fatty liver disease in adolescents. Hepatology. 2018; 67(1), 108122.CrossRefGoogle ScholarPubMed
Goldstein, JL, Brown, MS. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009; 29(4), 431438.CrossRefGoogle ScholarPubMed
Van Rooyen, DM, Larter, CZ, Haigh, WG, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011; 141(4), 13931403, 1403 e1391–1395.CrossRefGoogle ScholarPubMed
Kerr, TA, Davidson, NO. Cholesterol and nonalcoholic fatty liver disease: renewed focus on an old villain. Hepatology. 2012; 56(5), 19951998.CrossRefGoogle Scholar
Tomita, K, Teratani, T, Suzuki, T, et al. Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice. Hepatology. 2014; 59(1), 154169.CrossRefGoogle ScholarPubMed
Khatib, S, Vaya, J. Oxysterols and symptomatic versus asymptomatic human atherosclerotic plaque. Biochem Biophys Res Commun. 2014; 446(3), 709713.CrossRefGoogle ScholarPubMed
Bellanti, F, Villani, R, Facciorusso, A, Vendemiale, G, Serviddio, G. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis. Free Radic Biol Med. 2017. doi: 10.1016/j.freeradbiomed.2017.01.023.CrossRefGoogle ScholarPubMed
Brzeska, M, Szymczyk, K, Szterk, A. Current knowledge about oxysterols: a review. J Food Sci. 2016; 81(10), R2299R2308.CrossRefGoogle ScholarPubMed
Pannu, PS, Allahverdian, S, Francis, GA. Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol. 2013; 368(1–2), 99107.CrossRefGoogle ScholarPubMed
Gargiulo, S, Gamba, P, Testa, G, Leonarduzzi, G, Poli, G. The role of oxysterols in vascular ageing. J Physiol. 2016; 594(8), 20952113.CrossRefGoogle ScholarPubMed
Serviddio, G, Blonda, M, Bellanti, F, Villani, R, Iuliano, L, Vendemiale, G. Oxysterols and redox signaling in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res. 2013; 47(11), 881893.CrossRefGoogle ScholarPubMed
Hirsch, N, Konstantinov, A, Anavi, S, et al. Prolonged feeding with green tea polyphenols exacerbates cholesterol-induced fatty liver disease in mice. Mol Nutr Food Res. 2016; 60(12), 25422553.CrossRefGoogle ScholarPubMed
Anavi, S, Eisenberg-Bord, M, Hahn-Obercyger, M, Genin, O, Pines, M, Tirosh, O. The role of iNOS in cholesterol-induced liver fibrosis. Lab Invest. 2015; 95(8), 914924.CrossRefGoogle ScholarPubMed
Yasutake, K, Nakamuta, M, Shima, Y, et al. Nutritional investigation of non-obese patients with non-alcoholic fatty liver disease: the significance of dietary cholesterol. Scand J Gastroenterol. 2009; 44(4), 471477.CrossRefGoogle ScholarPubMed
Leiva, A, de Medina, CD, Salsoso, R, et al. Maternal hypercholesterolemia in pregnancy associates with umbilical vein endothelial dysfunction role of endothelial nitric oxide synthase and arginase II. Arterioscler Thromb Vasc Biol. 2013; 33(10), 24442453.CrossRefGoogle ScholarPubMed
Palinski, W, Napoli, C. The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J. 2002; 16(11), 13481360.CrossRefGoogle ScholarPubMed
Retnakaran, R, Qi, Y, Sermer, M, Connelly, PW, Hanley, AJ, Zinman, B. The postpartum cardiovascular risk factor profile of women with isolated hyperglycemia at 1-hour on the oral glucose tolerance test in pregnancy. Nutr Metab Cardiovasc Dis. 2011; 21(9), 706712.CrossRefGoogle ScholarPubMed
Rizzo, M, Berneis, K, Altinova, AE, et al. Atherogenic lipoprotein phenotype and LDL size and subclasses in women with gestational diabetes. Diabet Med. 2008; 25(12), 14061411.CrossRefGoogle ScholarPubMed
Harville, EW, Viikari, JS, Raitakari, OT. Preconception cardiovascular risk factors and pregnancy outcome. Epidemiology. 2011; 22(5), 724730.CrossRefGoogle ScholarPubMed
National Center for Health Statistics. Health, United States, 2013: With Special Feature on Prescription Drugs. Hyattsville, MD. 2014.Google Scholar
Laz, TH, Rahman, M, Berenson, AB. Trends in serum lipids and hypertension prevalence among non-pregnant reproductive-age women: United States National Health and Nutrition Examination Survey 1999-2008. Matern Child Health J. 2013; 17(8), 14241431.CrossRefGoogle ScholarPubMed
Napoli, C, D’Armiento, FP, Mancini, FP, et al. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest. 1997; 100(11), 26802690.CrossRefGoogle ScholarPubMed
Mendelson, MM, Lyass, A, O’Donnell, CJ, D’Agostino, RB, Sr, Levy D. ASsociation of maternal prepregnancy dyslipidemia with adult offspring dyslipidemia in excess of anthropometric, lifestyle, and genetic factors in the framingham heart study. JAMA Cardiol. 2016; 1(1), 2635.CrossRefGoogle ScholarPubMed
Bartels, A, O’Donoghue, K. Cholesterol in pregnancy: a review of knowns and unknowns. Obstet Med. 2011; 4(4), 147151.CrossRefGoogle ScholarPubMed
Zhang, R, Dong, S, Ma, WW, et al. Modulation of cholesterol transport by maternal hypercholesterolemia in human full-term placenta. PLoS One. 2017; 12(2), e0171934.CrossRefGoogle ScholarPubMed
Montes, A, Walden, CE, Knopp, RH, Cheung, M, Chapman, MB, Albers, JJ. Physiologic and supraphysiologic increases in lipoprotein lipids and apoproteins in late pregnancy and postpartum. Possible markers for the diagnosis of “prelipemia”. Arteriosclerosis. 1984; 4(4), 407417.CrossRefGoogle Scholar
Knopp, RH, Bergelin, RO, Wahl, PW, Walden, CE, Chapman, M, Irvine, S. Population-based lipoprotein lipid reference values for pregnant women compared to nonpregnant women classified by sex hormone usage. Am J Obstet Gynecol. 1982; 143(6), 626637.CrossRefGoogle ScholarPubMed
Feitosa, ACR, Barreto, LT, Silva, IMD, Silva, FFD, Feitosa, GSF. Impact of the use of different diagnostic criteria in the prevalence of dyslipidemia in pregnant women. Arq Bras Cardiol. 2017; 109(1), 3038.Google ScholarPubMed
Napoli, C, Glass, CK, Witztum, JL, Deutsch, R, D’Armiento, FP, Palinski, W. Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet. 1999; 354(9186), 12341241.CrossRefGoogle ScholarPubMed
Liguori, A, D’Armiento, FP, Palagiano, A, et al. Effect of gestational hypercholesterolaemia on omental vasoreactivity, placental enzyme activity and transplacental passage of normal and oxidised fatty acids. BJOG : Int J Obst Gynaecol. 2007; 114(12), 15471556.CrossRefGoogle ScholarPubMed
Palinski, W, Napoli, C. Pathophysiological events during pregnancy influence the development of atherosclerosis in humans. Trends Cardiovasc Med. 1999; 9(7), 205214.CrossRefGoogle ScholarPubMed
Leiva, A, de Medina, CD, Salsoso, R, et al. Maternal hypercholesterolemia in pregnancy associates with umbilical vein endothelial dysfunction: role of endothelial nitric oxide synthase and arginase II. Arterioscler Thromb Vasc Biol. 2013; 33(10), 24442453.CrossRefGoogle ScholarPubMed
Maymunah, AO, Kehinde, O, Abidoye, G, Oluwatosin, A. Hypercholesterolaemia in pregnancy as a predictor of adverse pregnancy outcome. Afr Health Sci. 2014; 14(4), 967973.CrossRefGoogle ScholarPubMed
Catov, JM, Bodnar, LM, Kip, KE, et al. Early pregnancy lipid concentrations and spontaneous preterm birth. Am J Obst Gynecol. 2007; 197(6), 610 e611–617.CrossRefGoogle ScholarPubMed
Magnussen, EB, Vatten, LJ, Myklestad, K, Salvesen, KA, Romundstad, PR. Cardiovascular risk factors prior to conception and the length of pregnancy: population-based cohort study. Am J Obst Gynecol. 2011; 204(6), 526 e521–528.CrossRefGoogle ScholarPubMed
Gademan, MG, Vermeulen, M, Oostvogels, AJ, et al. Maternal prepregancy BMI and lipid profile during early pregnancy are independently associated with offspring’s body composition at age 5-6 years: the ABCD study. PLoS One. 2014; 9(4), e94594.CrossRefGoogle ScholarPubMed
Daraki, V, Georgiou, V, Papavasiliou, S, et al. Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece. PLoS One. 2015; 10(5), e0126327.CrossRefGoogle ScholarPubMed
Romejko-Wolniewicz, E, Lewandowski, Z, Zareba-Szczudlik, J, Czajkowski, K. BMI of the firstborn offspring at age 12 reflects maternal LDL and HDL cholesterol levels at term pregnancy and postpartum. J Matern Fetal Neonatal Med. 2014; 27(9), 914920.CrossRefGoogle ScholarPubMed
Narverud, I, van Lennep, JR, Christensen, JJ, et al. Maternal inheritance does not predict cholesterol levels in children with familial hypercholesterolemia. Atherosclerosis. 2015; 243(1), 155160.CrossRefGoogle Scholar
Marcovecchio, ML, Tossavainen, PH, Heywood, JJ, Dalton, RN, Dunger, DB. An independent effect of parental lipids on the offspring lipid levels in a cohort of adolescents with type 1 diabetes. Pediatr Diabetes. 2012; 13(6), 463469.CrossRefGoogle Scholar
Morrison, KM, Anand, SS, Yusuf, S, et al. Maternal and pregnancy related predictors of cardiometabolic traits in newborns. PLoS One. 2013; 8(2), e55815.CrossRefGoogle ScholarPubMed
Baardman, ME, Kerstjens-Frederikse, WS, Berger, RM, Bakker, MK, Hofstra, RM, Plosch, T. The role of maternal-fetal cholesterol transport in early fetal life: current insights. Biol Reprod. 2013; 88(1), 24.CrossRefGoogle ScholarPubMed
Aye, IL, Keelan, JA. Placental ABC transporters, cellular toxicity and stress in pregnancy. Chem Biol Interact. 2013; 203(2), 456466.CrossRefGoogle ScholarPubMed
Leiva, A, de Medina, CD, Guzmán-Gutiérrez, E, Pardo, F, Sobrevia, L. Maternal hypercholesterolemia in gestational diabetes and the association with placental endothelial dysfunction. In Gestational Diabetes - Causes, Diagnosis and Treatment, Dr Luis Sobrevia (Ed). 2013; doi: 10.5772/55297.Google Scholar
Marseille-Tremblay, C, Ethier-Chiasson, M, Forest, JC, et al. Impact of maternal circulating cholesterol and gestational diabetes mellitus on lipid metabolism in human term placenta. Mol Reprod Dev. 2008; 75(6), 10541062.CrossRefGoogle ScholarPubMed
Ethier-Chiasson, M, Duchesne, A, Forest, JC, et al. Influence of maternal lipid profile on placental protein expression of LDLr and SR-BI. Biochem Biophys Res Commun. 2007; 359(1), 814.CrossRefGoogle ScholarPubMed
McConihay, JA, Horn, PS, Woollett, LA. Effect of maternal hypercholesterolemia on fetal sterol metabolism in the Golden Syrian hamster. J Lipid Res. 2001; 42(7), 11111119.CrossRefGoogle ScholarPubMed
Palinski, W, D’Armiento, FP, Witztum, JL, et al. Maternal hypercholesterolemia and treatment during pregnancy influence the long-term progression of atherosclerosis in offspring of rabbits. Circ Res. 2001; 89(11), 991996.CrossRefGoogle ScholarPubMed
Alkemade, FE, van Vliet, P, Henneman, P, et al. Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. Am J Pathol. 2010; 176(2), 542548.CrossRefGoogle ScholarPubMed
Alkemade, FE, Gittenberger-de Groot, AC, Schiel, AE, et al. Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life. Arterioscler Thromb Vasc Biol. 2007; 27(10), 22282235.CrossRefGoogle ScholarPubMed
Goharkhay, N, Sbrana, E, Gamble, PK, et al. Characterization of a murine model of fetal programming of atherosclerosis. Am J Obstet Gynecol. 2007; 197(4), 416 e411–415.CrossRefGoogle ScholarPubMed
Goharkhay, N, Tamayo, EH, Yin, H, Hankins, GD, Saade, GR, Longo, M. Maternal hypercholesterolemia leads to activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol. 2008; 199(3), 273 e271–276.CrossRefGoogle ScholarPubMed
De Assis, SM, Seguro, AC, Helou, CM. Effects of maternal hypercholesterolemia on pregnancy and development of offspring. Pediatr Nephrol. 2003; 18(4), 328334.CrossRefGoogle ScholarPubMed
Xie, CH, Zhang, L, Zeng, BH, Yuan, J, Tang, H, Wei, H. Hypercholesterolemia in pregnant mice increases the susceptibility to atherosclerosis in adult life. Vascular. 2014; 22(5), 328335.CrossRefGoogle ScholarPubMed
Trenteseaux, C, Gaston, AT, Aguesse, A, et al. Perinatal hypercholesterolemia exacerbates atherosclerosis lesions in offspring by altering metabolism of Trimethylamine-N-Oxide and Bile Acids. Arterioscler Thromb Vasc Biol. 2017. doi: 10.1161/atvbaha.117.309923.CrossRefGoogle ScholarPubMed
Rideout, TC, Movsesian, C, Tsai, YT, Iqbal, A, Raslawsky, A, Patel, MS. Maternal phytosterol supplementation during pregnancy and lactation modulates lipid and lipoprotein response in offspring of apoE-Deficient Mice. J Nutr. 2015; 145(8), 17281734.CrossRefGoogle ScholarPubMed
Liu, J, Iqbal, A, Raslawsky, A, Browne, RW, Patel, MS, Rideout, TC. Influence of maternal hypercholesterolemia and phytosterol intervention during gestation and lactation on dyslipidemia and hepatic lipid metabolism in offspring of Syrian golden hamsters. Mol Nutr Food Res. 2016; 60(10), 21512160.CrossRefGoogle ScholarPubMed
Juritsch, A, Tsai, YT, Patel, MS, Rideout, TC. Transcriptional control of enterohepatic lipid regulatory targets in response to early cholesterol and phytosterol exposure in apoE-/- mice. BMC Res Notes. 2017; 10(1), 529.CrossRefGoogle Scholar
Dumolt, JH, Radhakrishnan, SK, Moghadasian, MH, et al. Maternal hypercholesterolemia enhances oxysterol concentration in mothers and newly weaned offspring but is attenuated by maternal phytosterol supplementation. J Nutr Biochem. 2018; 52, 1017.CrossRefGoogle ScholarPubMed
Dumolt, JH, Browne, RW, Patel, MS, Rideout, TC. Malprogramming of hepatic lipid metabolism due to excessive early cholesterol exposure in adult progeny. Mol Nutr Food Res. 2019; 63(2), e1800563.CrossRefGoogle ScholarPubMed
Yao, L, Jenkins, K, Horn, PS, Lichtenberg, MH, Woollett, LA. Inability to fully suppress sterol synthesis rates with exogenous sterol in embryonic and extraembyronic fetal tissues. Biochim Biophys Acta. 2007; 1771(11), 13721379.CrossRefGoogle ScholarPubMed
Montoudis, A, Boileau, S, Simoneau, L, Lafond, J. Impact of an enriched-cholesterol diet on enzymatic cholesterol metabolism during rabbit gestation. Life Sci. 2003; 73(11), 14631477.CrossRefGoogle ScholarPubMed
Marseille-Tremblay, C, Gravel, A, Lafond, J, Mounier, C. Effect of an enriched cholesterol diet during gestation on fatty acid synthase, HMG-CoA reductase and SREBP-1/2 expressions in rabbits. Life Sci. 2007; 81(9), 772778.CrossRefGoogle ScholarPubMed
Dumolt, JH, Ma, M, Mathew, J, Patel, MS, Rideout, TC. Gestational hypercholesterolemia alters fetal hepatic lipid metabolism and microRNA expression in Apo-E deficient mice. Am J Physiol Endocrinol Metab. 2019. doi: 10.1152/ajpendo.00138.2019.CrossRefGoogle ScholarPubMed
Du, Y, Yang, M, Lee, S, et al. Maternal western diet causes inflammatory milk and TLR2/4-dependent neonatal toxicity. Genes Dev. 2012; 26(12), 13061311.CrossRefGoogle ScholarPubMed
Tsuduki, T, Kitano, Y, Honma, T, Kijima, R, Ikeda, I. High dietary fat intake during lactation promotes development of diet-induced obesity in male offspring of mice. J Nutr Sci Vitaminol (Tokyo). 2013; 59(5), 384392.CrossRefGoogle ScholarPubMed
Bravi, F, Wiens, F, Decarli, A, Dal Pont, A, Agostoni, C, Ferraroni, M. Impact of maternal nutrition on breast-milk composition: a systematic review. Am J Clin Nutr. 2016; 104(3), 646662.CrossRefGoogle ScholarPubMed
Isganaitis, E, Venditti, S, Matthews, TJ, Lerin, C, Demerath, EW, Fields, DA. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am J Clin Nutr. 2019. doi: 10.1093/ajcn/nqy334.CrossRefGoogle ScholarPubMed
Fields, DA, Demerath, EW. Relationship of insulin, glucose, leptin, IL-6 and TNF-alpha in human breast milk with infant growth and body composition. Pediatr Obes. 2012; 7(4), 304312.CrossRefGoogle ScholarPubMed
Mott, GE, Jackson, EM, McMahan, CA, Farley, CM, McGill, HC Jr. Cholesterol metabolism in juvenile baboons. Influence of infant and juvenile diets. Arteriosclerosis. 1985; 5(4), 347354.CrossRefGoogle ScholarPubMed
Mott, GE, McMahan, CA, Kelley, JL, Farley, CM, McGill, HC Jr. Influence of infant and juvenile diets on serum cholesterol, lipoprotein cholesterol, and apolipoprotein concentrations in juvenile baboons (Papio sp.). Atherosclerosis. 1982; 45(2), 191202.CrossRefGoogle Scholar
Mott, GE, Jackson, EM, McMahan, CA, McGill, HC Jr. Cholesterol metabolism in adult baboons is influenced by infant diet. J Nutr. 1990; 120(3), 243251.CrossRefGoogle ScholarPubMed
Mott, GE, Jackson, EM, McMahan, CA. Bile composition of adult baboons is influenced by breast versus formula feeding. J Pediatr Gastroenterol Nutr. 1991; 12(1), 121126.CrossRefGoogle ScholarPubMed
Bayley, TM, Alasmi, M, Thorkelson, T, et al. Influence of formula versus breast milk on cholesterol synthesis rates in four-month-old infants. Pediatr Res. 1998; 44(1), 6067.CrossRefGoogle ScholarPubMed
Yao, L, Woollett, LA. Adult sterol metabolism is not affected by a positive sterol balance in the neonatal Golden Syrian hamster. Am J Physiol Regul Integr Comp Physiol. 2005; 288(3), R561566.CrossRefGoogle Scholar
Tsuduki, T, Yamamoto, K, Hatakeyama, Y, Sakamoto, Y. High dietary cholesterol intake during lactation promotes development of fatty liver in offspring of mice. Mol Nutr Food Res. 2016; 60(5), 11101117.CrossRefGoogle ScholarPubMed
Lonardo, A, Nascimbeni, F, Ballestri, S, et al. Sex differences in NAFLD: state of the art and identification of research gaps. Hepatology. 2019. doi: 10.1002/hep.30626.CrossRefGoogle ScholarPubMed
Pramfalk, C, Pavlides, M, Banerjee, R, et al. Sex-specific differences in hepatic fat oxidation and synthesis may explain the higher propensity for NAFLD in men. J Clin Endocrinol Metab. 2015; 100(12), 44254433.CrossRefGoogle ScholarPubMed
Kurt, Z, Barrere-Cain, R, LaGuardia, J, et al. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol Sex Differ. 2018; 9(1), 46.CrossRefGoogle ScholarPubMed
Dearden, L, Bouret, SG, Ozanne, SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. 2018. doi: 10.1016/j.molmet.2018.04.007.CrossRefGoogle Scholar
Koeth, RA, Wang, Z, Levison, BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013; 19(5), 576585.CrossRefGoogle ScholarPubMed
Deans, C, Maggert, KA. What do you mean, “epigenetic”? Genetics. 2015; 199(4), 887896.CrossRefGoogle Scholar
Sayols-Baixeras, S, Irvin, MR, Arnett, DK, Elosua, R, Aslibekyan, SW. Epigenetics of lipid phenotypes. Curr Cardiovasc Risk Rep. 2016; 10(10).CrossRefGoogle ScholarPubMed
Heerwagen, MJ, Miller, MR, Barbour, LA, Friedman, JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010; 299(3), R711722.CrossRefGoogle ScholarPubMed
Lee, HS. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients. 2015; 7(11), 94929507.CrossRefGoogle ScholarPubMed
Mittelstrass, K, Waldenberger, M. DNA methylation in human lipid metabolism and related diseases. Curr Opin Lipidol. 2018; 29(2), 116124.CrossRefGoogle ScholarPubMed
de Nigris, F, Cacciatore, F, Mancini, FP, et al. Epigenetic hallmarks of fetal early atherosclerotic lesions in humans. JAMA Cardiol. 2018. doi: 10.1001/jamacardio.2018.3546.CrossRefGoogle ScholarPubMed
Napoli, C, Infante, T, Casamassimi, A. Maternal-foetal epigenetic interactions in the beginning of cardiovascular damage. Cardiovasc Res. 2011; 92(3), 367374.CrossRefGoogle ScholarPubMed
Yu, J, Peng, J, Luan, Z, Zheng, F, Su, W. MicroRNAs as a novel tool in the diagnosis of liver lipid dysregulation and fatty liver disease. Molecules. 2019; 24(2), 230.CrossRefGoogle Scholar
Puppala, S, Li, C, Glenn, JP, et al. Primate fetal hepatic responses to maternal obesity: epigenetic signalling pathways and lipid accumulation. J Physiol. 2018; 596(23), 58235837.CrossRefGoogle ScholarPubMed