Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-02-02T23:21:04.055Z Has data issue: false hasContentIssue false

The effects of maternal body weight on iodine concentration in breast milk and cord blood and infant growth

Published online by Cambridge University Press:  30 January 2025

Ceren Şarahman Kahraman*
Affiliation:
Department of Nutrition and Dietetics, Faculty of Health Sciences, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
Hasan Basri Savaş
Affiliation:
Department of Basic Medical Sciences, Faculty of Medicine, Mardin Artuklu University, Artuklu, Mardin, Turkey
Dilek Erdem
Affiliation:
Department of Surgical Sciences, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Antalya, Turkey
Nurcan Yabancı Ayhan
Affiliation:
Department of Nutrition and Dietetics, Faculty of Health Sciences, Ankara University, Keçiören, Ankara, Turkey
*
Corresponding author: Ceren Şarahman Kahraman; Email: [email protected]

Abstract

Breast milk (BM) is the only source of iodine and bioactive compounds that influence growth and development in infants. The content of BM may be influenced by maternal body mass index (BMI). The aim of this study was to investigate the effect of maternal weight on BM and cord blood iodine concentrations, growth-related hormones, infant anthropometric measurements. A total of 84 mother-infant pairs participated. Levels of leptin, adiponectin and insulin-like growth factor-I (IGF-I) in postnatal BM and cord blood were analysed by enzyme-linked immunosorbent assay (ELISA), iodine by Sandell-Kolthoff reaction. Dietary iodine intake of women was determined by food frequency questionnaire, and anthropometric measurements of infants at birth and 3 months were evaluated. Dietary iodine intake was found to be similar in normal weight (NW) and overweight/obese (OW/OB) women (p > 0.05). Breast milk iodine concentration (BMIC) was 17.4 μg in NW, 18.2 μg in OB/OW women. Adiponectin in cord blood and IGF-I in BM were higher OB/OW than NW women (p < 0.05). Positive correlations were found between the infant birth weight and adiponectin in BM, between the infant body weight at 3 months and leptin and adiponectin in BM, between the infant birth head circumference and IGF-I in BM (p < 0.05). In multiple linear regression model, leptin and adiponectin in BM had a positive effect on infant body weight (p < 0.05). Maternal BMI may influence infant body weight via leptin and adiponectin in BM and infant head circumference via IGF-I. No relationship was found between maternal BMI and iodine levels and anthropometric measurements of the infant. Longitudinal studies are recommended to understand the effect of BMIC on growth.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press in association with The International Society for Developmental Origins of Health and Disease (DOHaD)

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zimmermann, MB. The role of iodine in human growth and development. Semin Cell Dev Biol. 2011; 22, 645652. DOI: 10.1016/j.semcdb.2011.07.009.CrossRefGoogle ScholarPubMed
Zimmermann, MB, Jooste, PL, Pandav, CS. Iodine-deficiency disorders. Lancet. 2008; 372, 12511262. DOI: 10.1016/S0140-6736(08)61005-3.CrossRefGoogle ScholarPubMed
Azizi, F, Smyth, P. Breastfeeding and maternal and infant iodine nutrition. Clin Endocrinol (Oxf). 2009; 70, 803809. DOI: 10.1111/j.1365-2265.2008.03442.x.CrossRefGoogle ScholarPubMed
Young, BE, Johnson, SL, Krebs, NF. Biological determinants linking infant weight gain and child obesity: current knowledge and future directions. Adv Nutr. 2012; 3, 675686. DOI: 10.3945/an.112.002238.CrossRefGoogle ScholarPubMed
Hellström, A, Ley, D, Hansen-Pupp, I. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Paediatr. 2016; 105, 576586. DOI: 10.1111/apa.13350.CrossRefGoogle ScholarPubMed
Suwaydi, MA, Gridneva, Z, Perrella, SL, Wlodek, ME, Lai, CT, Geddes, DT. Human milk metabolic hormones: analytical methods and current understanding. Int J Mol Sci. 2021; 22, 8708. DOI: 10.3390/ijms22168708.CrossRefGoogle ScholarPubMed
Ley, SH, Hanley, AJ, Sermer, M, Zinman, B, O’Connor, DL. Associations of prenatal metabolic abnormalities with insulin and adiponectin concentrations in human milk. Am J Clin Nutr. 2012; 95, 867874. DOI: 10.3945/ajcn.111.028431.CrossRefGoogle ScholarPubMed
Weyermann, M, Beermann, C, Brenner, H, Rothenbacher, D. Adiponectin and leptin in maternal serum, cord blood, and breast milk. Clin Chem. 2006; 52, 20952102. DOI: 10.1373/clinchem.2006.071019.CrossRefGoogle ScholarPubMed
Dündar, NO, Dündar, B, Cesur, G et al. Ghrelin and adiponectin levels in colostrum, cord blood and maternal serum. Pediatr Int. 2010; 52, 622625. DOI: 10.1111/j.1442-200X.2010.03100.x.CrossRefGoogle ScholarPubMed
He, H, Zhu, WT, Nuyt, AM et al. Cord Blood IGF-I, Proinsulin, Leptin, HMW Adiponectin, and Ghrelin in Short or Skinny Small-for-Gestational-Age Infants. J Clin Endocrinol Metab. 2021; 106, e3049e3057. DOI: 10.1210/clinem/dgab178.CrossRefGoogle ScholarPubMed
Fields, DA, Schneider, CR, Pavela, G. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity (Silver Spring). 2016; 24, 12131221. DOI: 10.1002/oby.21519.CrossRefGoogle ScholarPubMed
Leung, AM, Pearce, EN, Braverman, LE. Iodine nutrition in pregnancy and lactation. Endocrinol Metab Clin North Am. 2011; 40, 765777. DOI: 10.1016/j.ecl.2011.08.001.CrossRefGoogle ScholarPubMed
Dror, DK, Allen, LH. Iodine in human milk: a systematic review. Adv Nutr. 2018; 9, 347S357S. DOI: 10.1093/advances/nmy020.CrossRefGoogle Scholar
Henjum, S, Lilleengen, AM, Aakre, I, et al. Suboptimal iodine concentration in breastmilk and inadequate iodine intake among lactating women in Norway. Nutrients. 2017; 9, 643. DOI: 10.3390/nu9070643.CrossRefGoogle ScholarPubMed
Dold, S, Zimmermann, MB, Aboussad, A, et al. Breast milk iodine concentration is a more accurate biomarker of iodine status than urinary iodine concentration in exclusively breastfeeding women. J Nutr. 2017; 147, 528537. DOI: 10.3945/jn.116.242560.CrossRefGoogle ScholarPubMed
Nazeri, P, Dalili, H, Mehrabi, Y, et al. Breast milk iodine concentration rather than maternal urinary iodine is a reliable indicator for monitoring iodine status of breastfed neonates. Biol Trace Elem Res. 2018; 185, 7177. DOI: 10.1007/s12011-018-1246-9.CrossRefGoogle ScholarPubMed
Andersson, M, Braegger, CP. The role of iodine for thyroid function in lactating women and infants. Endocr Rew. 2021; 43, 649–506. DOI: 10.1210/endrev/bnab029.Google Scholar
Ordookhani, A, Pearce, EN, Hedayati, M, et al. Assessment of thyroid function and urinary and breast milk iodine concentrations in healthy newborns and their mothers in Tehran. Clin Endocrinol. 2007; 62, 175179. DOI: 10.1111/j.1365-2265.2007.02857.x.CrossRefGoogle Scholar
Mulrine, HM, Skeaff, SA, Ferguson, EL, et al. Breast-milk iodine concentration declines over the first 6 mo postpartum in iodine-deficient women. Am J Clin Nutr. 2010; 92, 849856. DOI: 10.3945/ajcn.2010.29630.CrossRefGoogle ScholarPubMed
Huynh, D, Condo, D, Gibson, R, et al. Iodine status of postpartum women and their infants in Australia after the introduction of mandatory iodine fortification. Br J Nutr. 2017; 117, 16561662. DOI: 10.1017/S0007114517001775.CrossRefGoogle ScholarPubMed
Chen, Y, Gao, M, Bai, Y, et al. Variation of iodine concentration in breast milk and urine in exclusively breastfeeding women and their infants during the first 24 wk after childbirth. Nutrition. 2020; 71, 110599. DOI: 10.1016/j.nut.2019.110599.CrossRefGoogle ScholarPubMed
Nazeri, P, Mirmiran, P, Shiva, N, et al. Iodine nutrition status in lactating mothers residing in countries with mandatory and voluntary iodine fortification programs: an updated systematic review. Mg Clin Cyt. 2015; 25, 611620. DOI: 10.1089/thy.2014.0491.Google ScholarPubMed
EFSA Panel on Dietetic Products Nutrition and Allergies (NDA). Scientific opinion on, dietary reference values for iodine, 2014; 12, 3660, Available at: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2014.3660 (Accessed: August 2023)CrossRefGoogle Scholar
Nordic Council of Ministers. Nordic nutrition recommendations 2012: integrating nutrition and physical activity: in iodine. 5th edn. 2014. Nordic Council of Ministers. Available at: https://norden.diva-portal.org/smash/get/diva2:704251/FULLTEXT01.pdf (Accessed: August 2023)Google Scholar
Ellsworth, L, Mccaffery, H, Harman, E, et al. Breast milk iodine concentration is associated with infant growth, independent of maternal weight. Nutrients. 2020; 12, 358. DOI: 10.3390/nu12020358.CrossRefGoogle ScholarPubMed
Robinson, SM, Crozier, SR, Miles, EA, et al. Preconception maternal iodine status is positively associated with IQ but not with measure of executive function in childhood. J Nutr. 2018; 148, 959966. DOI: 10.1093/jn/nxy054.CrossRefGoogle Scholar
Soriguer, F, Valdes, S, Morcillo, S, et al. Thyroid hormone levels predict the change in the body weight: a prospective study. Eur J Clin Invest. 2011; 41, 12021209. DOI: 10.1111/j.1365-2362.2011.02526.x.CrossRefGoogle ScholarPubMed
Lecube, A, Zafon, C, Gromaz, A, et al. Iodine deficiency is higher in morbid obesity in comparison with late after bariatric surgery and non-obese women. Obes Surg. 2015; 25, 8589. DOI: 10.1007/s11695-014-1313-z.CrossRefGoogle ScholarPubMed
Nazeri, P, Tahmasebinejad, Z, Hedayati, M, et al. Is breast milk iodine concentration an influential factor in growth-and obesity-related hormones and infants’ growth parameters? Matern Child Nutr. 2021; 17, e13078. DOI: 10.1111/mcn.13078.CrossRefGoogle ScholarPubMed
Kim, DW, Oh, S, Kwon, SO, et al. Comparison of validity of food group intake by food frequency questionnaire between pre-and post-adjustment estimates derived from 2-day 24-hour recalls in combination with probability of consumption. Asian Pac J Cancer Prev. 2012; 13, 26552661. DOI: 10.7314/apjcp.2012.13.6.2655.CrossRefGoogle ScholarPubMed
Willet, W. Food Frequency Methods: in: nutritional epidemiology. 5th edn. 2013. Oxford University Press, New York.Google Scholar
Institute of medicine (US) and National Research Council (US) Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines (eds. Rasmussen KM, Yaktine AL), 2009. National Academies Press (US), Washington (DC). Available at: https://www.ncbi.nlm.nih.gov/books/NBK32799/.Google Scholar
World Health Organization (WHO). WHO Anthro for Personal Computers Manual: Software for Assessing Growth and Development of the World’s Children. 2010. WHO, Geneva. Available at: https://www.who.int/tools/child-growth-standards/software.Google Scholar
Temelli, B, Yetkin, AY, Savaş, HB, et al. Circulation levels of acute phase proteins pentraxin 3 and serum amyloid a in atherosclerosis have correlations with periodontal inflamed surface area. J Appl Oral Sci. 2018; 26, e20170322. DOI: 10.1590/1678-7757-2017-0322.CrossRefGoogle ScholarPubMed
Oblak, A, Arohonka, P, Erlund, I, et al. Validation of a spectrophotometric method for ürinary iodine determination on microplate based on Sandell-kolthoff reaction. Lab. Med. 2022; 53, 376380. DOI: 10.1093/labmed/lmab117.CrossRefGoogle ScholarPubMed
Kratzsch, J, Bae, YJ, Kiess, W. Adipokines in human breast milk. Best pract res clin endocrinol metab. Best Pract Res Clinl Endocrino Metab. 2018; 32, 2738. DOI: 10.1016/j.beem.2018.02.001.CrossRefGoogle Scholar
Harding, KB, Peña-Rosas, JP, Webster, AC, et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev. 2017; 3, CD011761. DOI: 10.1002/14651858.CD011761.pub2.Google ScholarPubMed
Eriksen, KG, Andersson, M, Hunziker, S, et al. Effects of an iodine-containing prenatal multiple micronutrient on maternal and infant iodine status and thyroid function: a randomized trial in the Gambia. Mg Clin Cyt. 2020; 30, 13551365. DOI: 10.1089/thy.2019.0789.Google ScholarPubMed
Apaydın, M, Demirci, T, Özdemir Başer, Ö., et al. The effects of salt consumption habits on iodine status and thyroid functions during pregnancy. Turk J Med Sci. 2021; 51, 766771. DOI: 10.3906/sag-2007-127.CrossRefGoogle ScholarPubMed
Anaforoğlu, İ., Algün, E, İnceçayır, Ö., et al. Iodine status among pregnant women after mandatory salt iodisation. Br J Nutr. 2016; 115, 405410. DOI: 10.1017/S0007114515004559.CrossRefGoogle ScholarPubMed
Oral, E, Aydogan Mathyk, B, Aydogan, BI, et al. Iodine status of pregnant women in a metropolitan city which proved to be an iodine-sufficient area. Is mandatory salt iodisation enough for pregnant women? Gynecol Endocrinol. 2016; 32, 188192. DOI: 10.3109/09513590.2015.1101443.CrossRefGoogle Scholar
Anaforoğlu, I, Emral, R. İyot eksikliği hastalıkları ve Türkiye’deki durum. Tiroid hastalıkları tanı ve tedavi kılavuzu (eds. Türkiye Endokrinoloji ve Metabolizma Derneği Tiroid Çalışma Grubu), 2023; pp. 51–65. Türkiye Endokrinoloji ve Metabolizma Derneği. Available at: https://file.temd.org.tr/Uploads/publications/guides/documents/202305120904-2023tbl_kilavuz.pdf (Accessed: August 2023).Google Scholar
Zimmermann, MB, Andersson, M. Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev. 2012; 70, 553570. DOI: 10.1111/j.1753-4887.2012.00528.x.CrossRefGoogle ScholarPubMed
Melero, V, Runkle, I, Garcia de la Torre, N, et al. The consumption of food-based iodine in the immediate pre-pregnancy period in Madrid is insufficient. San Carlos and Pregnancy Cohort Study. Nutrients. 2021; 13, 4458. DOI: 10.3390/nu13124458.Google ScholarPubMed
Ogawa, K, Jwa, SC, Kobayashi, M, et al. Validation of a food frequency questionnaire for Japanese pregnant women with and without nausea and vomiting in early pregnancy. J Epidemiol. 2017; 27, 201208. DOI: 10.1016/j.je.2016.06.004.CrossRefGoogle ScholarPubMed
Castilla, AM, Murcia, M, Arrizabalaga, JJ, et al. Comparison of urinary iodine levels in women of childbearing age during and after pregnancy. Eur J Nutr. 2018; 57, 18071816. DOI: 10.1007/s00394-017-1465-4.CrossRefGoogle Scholar
(TÜBER), Türkiye Beslenme Rehberi. Sağlık bakanlığı, halk sağlığı Genel Müdürlüğü 2022. Sağlık Bakanlığı Yayın No: 1031, Ankara-XXXX. (2022).Google Scholar
Carlsen, EM, Renault, KM, Nørgaard, K, et al. Newborn regional body composition is influenced by maternal obesity, gestational weight gain and the birthweight standard score. Acta Paediatr. 2014; 103(9), 939945. DOI: 10.1111/apa.12713.CrossRefGoogle ScholarPubMed
Kurtoğlu, S, Hatipoğlu, N, Mazıcıoğlu, MM, et al. Body weight, length and head circumference at birth in a cohort of turkish newborns. J Clin Res Pediatr Endocrinol. 2012; 4, 132139. DOI: 10.4274/Jcrpe.693.CrossRefGoogle Scholar
Günther, V, Alkatout, I, Vollmer, C, et al. Impact of nicotine and maternal BMI on fetal birth weight. BMC Pregnancy Childbirth. 2021; 21, 127. DOI: 10.1186/s12884-021-03593-z.CrossRefGoogle ScholarPubMed
Bhowmik, B, Siddique, T, Majumder, A, et al. Maternal BMI and nutritional status in early pregnancy and its impact on neonatal outcomes at birth in Bangladesh. BMC Pregnancy Childbirth. 2019; 19, 413. DOI: 10.1186/s12884-019-2571-5.CrossRefGoogle ScholarPubMed
Syböck, K, Hartmann, B, Kirchengast, S. Maternal prepregnancy obesity affects foetal growth, birth outcome, mode of delivery, and miscarriage rate in Austrian women. Int J Environ Res Public Health. 2023; 20, 4139. DOI: 10.3390/ijerph20054139.CrossRefGoogle ScholarPubMed
Leung, AM, Pearce, EN, Hamilton, T, et al. Colostrum iodine and perchlorate concentrations in Boston-area women: a cross-sectional study. Clin Endocrinol (Oxf). 2009; 70, 326330. DOI: 10.1111/j.1365-2265.2008.03330.x.CrossRefGoogle ScholarPubMed
Jin, Y, Coad, J, Skeaff, SA, et al. Iodine status of postpartum women and their infants aged 3, 6 and 12 months: mother and infant nutrition investigation (MINI). Br J Nutr. 2022; 127, 570579. DOI: 10.1017/S000711452100129X.CrossRefGoogle ScholarPubMed
Bouhouch, RR, Bouhouch, S, Cherkaoui, M, et al. Direct iodine supplementation of infants versus supplementation of their breastfeeding mothers: a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014; 2, 197209. DOI: 10.1016/S2213-8587(13)70155-4.CrossRefGoogle ScholarPubMed
WHO Secretariat, Andersson M, de Benoist, B, etal. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the technical consultation. Public Health Nutr. 2007; 10, 16061611. DOI: 10.1017/S1368980007361004.CrossRefGoogle Scholar
Andersson, M, Aeberli, I, Wüst, N, et al. The swiss iodized salt program provides adequate iodine for school children and pregnant women, but weaning infants not receiving iodine-containing complementary foods as well as their mothers are iodine deficient. J Clin Endocrinol Metab. 2010; 95, 52175224. DOI: 10.1210/jc.2010-0975.CrossRefGoogle Scholar
Leung, AM, Braverman, LE, He, X, et al. Breastmilk iodine concentrations following acute dietary iodine intake. Mg Clin Cyt. 2012; 22, 11761180. DOI: 10.1089/thy.2012.0294.Google ScholarPubMed
Andersen, SL, Møller, M, Laurberg, P. Iodine concentrations in milk and in urine during breastfeeding are differently affected by maternal fluid intake. Mg Clin Cyt. 2014; 24, 764772. DOI: 10.1089/thy.2013.0541.Google ScholarPubMed
Sims, CR, Lipsmeyer, ME, Turner, DE, et al. Human milk composition differs by maternal BMI in the first 9 months postpartum. Am J Clin Nutr. 2020; 112, 548557. DOI: 10.1093/ajcn/nqaa098.CrossRefGoogle ScholarPubMed
Dumrongwongsiri, O, Chatvutinun, S, Phoonlabdacha, P, et al. High urinary iodine concentration among breastfed infants and the factors associated with iodine content in breast milk. Biol Trace Elem Res. 2018; 186, 106113. DOI: 10.1007/s12011-018-1303-4.CrossRefGoogle ScholarPubMed
Stefaniak, M, Dmoch-Gajzlerska, E, Mazurkiewicz, B, et al. Maternal serum and cord blood leptin concentrations at delivery. PLoS One. 2019; 14, e0224863. DOI: 10.1371/journal.pone.0224863.CrossRefGoogle ScholarPubMed
Sadr Dadres, G, Whitaker, KM, Haapala, JL, et al. Relationship of maternal weight status before, during, and after pregnancy with breast milk hormone concentrations. Obesity (Silver Spring). 2019; 27, 621628. DOI: 10.1002/oby.22409.CrossRefGoogle ScholarPubMed
Khodabakhshi, A, Mehrad-Majd, H, Vahid, F, et al. Association of maternal breast milk and serum levels of macronutrients, hormones, and maternal body composition with infant’s body weight. Eur J Clin Nutr. 2018; 72, 394400. DOI: 10.1038/s41430-017-0022-9.CrossRefGoogle ScholarPubMed
Chaoimh, CN, Murray, DM, Kenny, LC, et al. Cord blood leptin and gains in body weight and fat mass during infancy. Eur J Endocrinol. 2016; 175, 403410. DOI: 10.1530/EJE-16-0431.CrossRefGoogle ScholarPubMed
Woo, JG, Guerrero, ML, Altaye, M, et al. Human milk adiponectin is associated with infant growth in two independent cohorts. Breastfeed Med. 2009; 4, 101109. DOI: 10.1089/bfm.2008.0137.CrossRefGoogle ScholarPubMed
Yu, X, Rong, SS, Sun, X, et al. Associations of breast milk adiponectin, leptin, insulin and ghrelin with maternal characteristics and early infant growth: a longitudinal study. Br J Nutr. 2018; 120, 13801387. DOI: 10.1017/S0007114518002933.CrossRefGoogle ScholarPubMed
Weyermann, M, Brenner, H, Rothenbacher, D. Adipokines in human milk and risk of overweight in early childhood: a prospective cohort study. Epidemiology. 2007; 18, 722729. DOI: 10.1097/ede.0b013e3181567ed4.CrossRefGoogle Scholar
Luoto, R, Laitinen, K, Nermes, M, et al. Impact of maternal probiotic-supplemented dietary counseling during pregnancy on colostrum adiponectin concentration: a prospective, randomized, placebo-controlled study. Early Hum Dev. 2012; 88, 339344. DOI: 10.1016/j.earlhumdev.2011.09.006.CrossRefGoogle ScholarPubMed
Tekin Guler, T, Koc, N, Kara Uzun, A, et al. The association of pre-pregnancy BMI on leptin, ghrelin, adiponectin and insulin-like growth factor-1 in breast milk: a case-control study. Br J Nutr. 2022; 127, 16751681. DOI: 10.1017/S0007114521002932.CrossRefGoogle ScholarPubMed
Çatlı, G, Olgaç Dündar, N, Dündar, BN. Adipokines in breast milk: an update. J Clin Res Pediatr Endocrinol. 2014; 6, 192201. DOI: 10.4274/Jcrpe.1531.CrossRefGoogle ScholarPubMed
Garofoli, F, Mazzucchelli, I, Angelini, M, et al. Leptin levels of the perinatal period shape offspring’s weight trajectories through the first year of age. Nutrients. 2022; 14, 1451. DOI: 10.3390/nu14071451.CrossRefGoogle ScholarPubMed
Andreas, NJ, Hyde, MJ, Gale, C, et al. Effect of maternal body mass index on hormones in breast milk: a systematic review. PLoS One. 2014; 9, e115043. DOI: 10.1371/journal.pone.0115043.CrossRefGoogle ScholarPubMed
Woo, JG, Guerrero, ML, Guo, F, et al. Human milk adiponectin affects infant weight trajectory during the second year of life. J Pediatr Gastroenterol Nutr. 2012; 54, 532539. DOI: 10.1097/MPG.0b013e31823fde04.CrossRefGoogle ScholarPubMed
Anderson, J, McKinley, K, Onugha, J, et al. Lower levels of human milk adiponectin predict offspring weight for age: a study in a lean population of filipinos. Matern Child Nutr. 2016; 12, 790800. DOI: 10.1111/mcn.12216.CrossRefGoogle Scholar
Kon, IY, Shilina, NM, Gmoshinskaya, MV, et al. The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight gain in breast-fed infants. Ann Nutr Metab. 2014; 65, 317323. DOI: 10.1159/000367998.CrossRefGoogle Scholar
Cesur, G, Ozguner, F, Yilmaz, N, et al. The relationship between ghrelin and adiponectin levels in breast milk and infant serum and growth of infants during early postnatal life. J Physiol Sci. 2012; 62, 185190. DOI: 10.1007/s12576-012-0193-z.CrossRefGoogle ScholarPubMed
Wang, X, Xing, KH, Qi, J, et al. Analysis of the relationship of insulin-like growth factor-1 to the growth velocity and feeding of healthy infants. Growth Horm IGF Res. 2013; 23, 215219. DOI: 10.1016/j.ghir.2013.08.001.CrossRefGoogle Scholar
Mohsen, AH, Sallam, S, Ramzy, MM, et al. Investigating the relationship between insulin-like growth factor-1 (IGF-1) in diabetic mother’s breast milk and the blood serum of their babies. Electron Physician. 2016; 8, 25462550. DOI: 10.19082/2546.CrossRefGoogle ScholarPubMed
Eriksen, KG, Christensen, SH, Lind, MV, et al. Human milk composition and infant growth. Curr opin clin nutr metab care. Curr Opin Clin Nutr Metab Care. 2018; 21, 200206. DOI: 10.1097/MCO.0000000000000466.CrossRefGoogle Scholar
Farebrother, J, Naude, CE, Nicol, L, et al. Effects of iodized salt and iodine supplements on prenatal and postnatal growth: a systematic review. Adv Nutr. 2018; 9, 219237. DOI: 10.1093/advances/nmy009.CrossRefGoogle ScholarPubMed